cho tg abc có ab=12 ac=13 đg cao ah. tính ah
Cho tam giác Abc có ac =12,ab=9 kẻ đg cao Ah ,cmABC đồng dạng tg AHC ,Cm Ac^2 =Hc.Bc , Hc
Áp dụng định lý PYTAGO vào tam giác ABC có
BC^2=AB^2+AC^2= 9^2+12^2=225
=>BC= 15
Sabc= 1/2.AB.AC = 54 mà Sabc = 1/2.AH.BC
=>1/2.AH = Sabc: BC = 3.6=> AH =7,2
Cho tam giác ABC vuông tại A có AB=12, AC=16, đường cao AH (H thuộc BC). Tia p/g của góc ABC lần lượt cắt AH và AC tại M và N. Đường thẳng qua H song song với BN cắt AC tại I.
1) CM tg ABC đồng dạng với tg HBA
2) Tính độ dài các cạnh BC, AH, BH
3) CM tg AMN cân tại A và AM.AB=MH.BC
4)CM AM^2=NI.NC
1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A
1. Cho tam giác ABC cân tại A, đg cao AH, O là tđ của AH, BO và CO cắt AB,AC tại D,E. Tính Sadoe biết Sabc=108cm2
2,Cho tam giác ABC cân tại A, có 2 đg cao AH=10,BD=12. Tính Sabc
3, cho tam giác ABC có AB=20, AC=34,BC=42. Tính Sabc
Bạn nào làm gấp giúp mk vs ạ, thanks trước
Bài 1: Cho tg ABC cân tại A, vẽ phía ngoài các tg đều ABE, ACD.
a. cm: tg BCD= tg CBE
b. Kẻ đg cao AH của tg ABC. cm: EC, BD, AH cùng đi qua 1 điểm
c. cm: ED // BC
Bài 2: Cho tg cân ABC (AB=AC), trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE
a. cm: Tg ADE là tg cân
b. Gọi M là trung điểm BC. cm: AM là phân giác của góc DAE
c. Từ B và C, kẻ BH vg góc với AD và vg góc với AE. cm: BH = CK
d. cm: HK // DE
e. cm: 3 đg thẳng AM, BH và gặp nhau tại 1 điểm
Bài 3: Cho tg ABC, các trung tuyến BE và CD. Trên tia đối tia EB, lấy I sao cho EI = EB. Trên tia đối tia D, lấy K sao cho DC = DK
a. cm: A là trung điểm của KI
b. Cho BK và CI cắt nhau tại F. cm: BI, CK, FA đồng quy tại G
c. Cho FA và BC cắt nhau tại P. cm: GP = 1/4 GF
Giúp mình với! Nửa tiếng nữa mình phải nộp rồi!
bài 1 : a, cho tam giá ABC vuông tại A đg cao AH . Biết AB : AC = 3:7 , AH = 4cm TÍNH BH, HC
b, cho tam giá ABC vuông tại A đg cao AH . Biết \(\dfrac{BH}{HC}\)=\(\dfrac{9}{16}\), AH= 48cm .Timhs độ dài các cạnh góc vuông
bài 2 : cho tg ABC đg cao AH biết AB = 7,5 cm , AH=6cm . TÍNH AC , BC
cho tg ABC có AB=5; AC=12; BC=13
chừng minh tg ABC vuông tại A và tính độ dài đường cao AH
kẻ HE \(\perp\)AB tại E , HF\(\perp\)AC tại F chúng minh AE.AB=AC.AF
chứng minh tg AEF và tg ABC đồng dạng
a) Ta có: \(5^2+12^2=169\)
\(13^2=169\)
suy ra: \(5^2+12^2=13^2\)
Vậy tam giác ABC vuông tại A
Áp dụng hệ thức lượng ta có:
\(AB.AC=AH.BC\)
\(\Leftrightarrow\)\(AH=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}\)
b) Áp dụng hệ thức lượng ta có:
\(AH^2=AE.AB\)
\(AH^2=AF.AC\)
suy ra: \(AE.AB=AF.AC\)
c) \(AE.AB=AF.AC\) \(\Rightarrow\)\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét \(\Delta AEF\)và \(\Delta ACB\)ta có:
\(\frac{AE}{AC}=\frac{AF}{AB}\)
góc A chung
suy ra: \(\Delta AEF~\Delta ACB\)(c.g.c)
cho tg ABC vg tại A, đg cao AH. tính chu vi tg ABC, bt AH=14cm, \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
Ta có : \(\dfrac{HB}{HC}=\dfrac{1}{4}\Rightarrow HB=\dfrac{1}{4}HC\)
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức :
\(AH^2=HB.HC=\left(\dfrac{1}{4}HC\right)HC\Rightarrow256=\dfrac{1}{4}HC^2\)
\(\Leftrightarrow HC^2=1024\Leftrightarrow HC=32\)cm
\(\Rightarrow HB=\dfrac{1}{4}.32=8\)cm
=> BC = HB + HC = 32 + 8 = 40 cm
* Áp dụng hệ thức : \(AB^2=BH.BC=8.40=320\Rightarrow AB=8\sqrt{5}\)cm
* Áp dụng hệ thức : \(AC^2=CH.BC=32.40=1280\Rightarrow AC=16\sqrt{5}\)cm
Chu vi tam giác ABC là :
\(P_{ABC}=AB+AC+BC=24\sqrt{5} +40\)cm
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{4}\)
nên \(HB=\dfrac{1}{4}HC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(HB\cdot HC=AH^2\)
\(\Leftrightarrow HC\cdot\dfrac{1}{4}\cdot HC=14^2=196\)
\(\Leftrightarrow HC^2=196:\dfrac{1}{4}=196\cdot4=784\)
hay HC=28(cm)
\(\Leftrightarrow HB=\dfrac{1}{4}\cdot HC=\dfrac{1}{4}\cdot28=7\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=7\cdot35=245\\AC^2=28\cdot35=980\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=7\sqrt{5}\left(cm\right)\\AC=14\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=7\sqrt{5}+14\sqrt{5}+35=35+21\sqrt{5}\left(cm\right)\)
b1: cho tg abc vg tại a, có ab= 5cm, sin góc c= 1/2
a) tính góc C, góc B
b) tính các cạnh còn lại ở tg vg abc và đg cao ah
B2: cho tg abc vg tại a có tan góc B= 5/12 và ab= 30cm
a, tính bc, ac, đg cao ah
b,tính cotan góc cah, cotan góc bah
Giải giúp mình bài này đi mình cần gấp ;^;
Cho tg ABC vuông tại A, AB=a,gocsABC=60độ
a)tính theo a độ dài các cạnh AC và BC
b)kẻ đg cao AH của tgABC.Tính BH,CH theo a
c)tính SinC,từ đó suy ra độ dài đg cao AH