Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Vinh
Xem chi tiết
Hoang Vinh
Xem chi tiết
Hoàng Thị Mai Trang
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 2 2021 lúc 23:09

\(\left(x+\sqrt{x^2+2020}\right)\left(2y+\sqrt{\left(2y\right)^2+2020}\right)=2020\)

\(\Leftrightarrow\left\{{}\begin{matrix}2y+\sqrt{\left(2y\right)^2+2020}=\sqrt{x^2+2020}-x\\x+\sqrt{x^2+2020}=\sqrt{\left(2y\right)^2+2020}-2y\end{matrix}\right.\)

\(\Rightarrow x+2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}=-x-2y+\sqrt{x^2+2020}+\sqrt{\left(2y\right)^2+2020}\)

\(\Leftrightarrow2\left(x+2y\right)=0\)

\(\Leftrightarrow x=-2y\)

\(\Rightarrow B=2y^2-8y^2+3y^2-2y+3y+15\)

\(\Rightarrow B=-3y^2+y+15=-3\left(y-\dfrac{1}{6}\right)^2+\dfrac{181}{12}\)

\(B_{max}=\dfrac{181}{12}\) khi \(y=\dfrac{1}{6}\)

linhtngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 19:19

a: A=-(x-7)^2-888<=-888

Dấu = xảy ra khi x=7

b: \(B=\left|2x-1\right|+\left|y-5\right|+\dfrac{8}{3}>=\dfrac{8}{3}\)

Dấu = xảy ra khi x=1/2 và y=5

c: \(C=\left(x+3\right)^2+\left|2y-5\right|-232>=-232\)

Dấu = xảy ra khi x=-3 và y=5/2

N.T.M.D
Xem chi tiết
Khánh Ngọc
8 tháng 10 2020 lúc 11:03

x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0

<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0

<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z

Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )

Thay ( 1 ) vào A , ta được :

\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)

Vậy A = 2

Khách vãng lai đã xóa
Nguyễn Minh Đăng
8 tháng 10 2020 lúc 12:53

Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Minh Đăng
Xem chi tiết
DTD2006ok
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 23:06

Bạn coi lại đề, nhìn 2 vế của điều kiên đều là \(\sqrt{x+2}\) có vẻ sai sai rồi đó

shunnokeshi
Xem chi tiết
 ๛๖ۣۜMĭη²ƙ⁸࿐
Xem chi tiết
Kudo Shinichi
22 tháng 9 2019 lúc 21:19

\(A=x^2+2y^2+2xy+2x-4y+2020\)

      \(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)

        \(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}y=3\\x+y+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=3\\x=-4\end{cases}}}\)

Vậy \(Min_A=2010\Leftrightarrow\hept{\begin{cases}x=-4\\y=3\end{cases}}\)

Chúc bạn học tốt !!!

T.Ps
22 tháng 9 2019 lúc 21:20

Tham khảo :

\(A=x^2+2y^2+2xy+2x-4y+2020\)

\(=\left(x^2+y^2+1+2x+2xy+2y\right)+\left(y^2-6y+9\right)+2010\)

\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2010\ge2010\)

Dấu ''=''= xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=-4\\y=3\end{cases}}\)

Nguyễn Thị Ngọc Thư
21 tháng 12 2019 lúc 10:14

cho mình hỏi cái :

10 mũ x+4y=2013

mình đang cần gấp 3 tiếng nưa là mình phải đi học rồi 

Khách vãng lai đã xóa
tran bao trung
Xem chi tiết