Giải pt
(x - 2)2 + (3x - 1)(3x + 1) = (x + 1)3
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
\(5) (3x -1)^2 - (x +3)(2x-1) = 7(x + 1)(x -2) -3x\)
Giải pt
1)giải pt: 1+\(\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
2)giải pt: \(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
Giải pt:
a)(x^2-1)(x^2+4x+3)=192
b)x^5-x^4+3x^3+3x^2-x+1)=0
c)x^4+3x^3+4x^2+3x+1=0
a)
\(\left(x^2-1\right)\left(x^2+4x+3\right)=\left(x-1\right)\left(x+1\right)\left[\left(x+2\right)^2-1\right]=\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(x+3\right)\)
\(\left[\left(x-1\right)\left(x+3\right)\right]\left[\left(x+1\right)\left(x+1\right)\right]=\left(x^2+2x-3\right)\left(x^2+2x+1\right)\)
dặt x^2+2x-1=t(*)
(a) \(\Leftrightarrow\left(t-2\right)\left(t+2\right)=192\) \(\Leftrightarrow t^2-4=192\Rightarrow t^2=196\Rightarrow\left\{\begin{matrix}t=-14\\t=14\end{matrix}\right.\)
Thay t vào (*) => x (tự làm)
a) (x-1)(x+1)(x+1)(x+3)=192. \(\Leftrightarrow\) (x+1)2(x-1)(x+3)=192 \(\Leftrightarrow\) (x2+2x+1) (x2+2x-3)=192 Đặt x2+2x+1=t thì x2+2x-3=t-4 ta có t(t-4)=192 \(\Leftrightarrow\) t2-4t-192=0 \(\Leftrightarrow\) t=-12 hoặc t=16 Với t=-12 thì (x+1)2=-12 ( vô lí ) Với t=16 thì (x+1)2=16 \(\Leftrightarrow\) x=-5 hoặc x=3 b) x\(^5\)+x4-2x4-2x3+5x3+5x2-2x2-2x+x+1=0 \(\Leftrightarrow\) x4(x+1)-2x3(x+1)+5x2(x+1)-2x(x+1)+(x+1)=0 \(\Leftrightarrow\) (x+1)(x4-2x3+5x2-2x+1)=0 \(\Leftrightarrow\) x=-1 ( CM x4-2x3+5x2-2x+1 vô nghiệm ) c) x4-x3-2x3+2x2+2x2-2x-x+1=0 \(\Leftrightarrow\) x3(x-1)-2x2(x-1)+2x(x-1)-(x-1)=0 \(\Leftrightarrow\) (x-1)(x3-2x2+2x-1)=0 \(\Leftrightarrow\) (x-1)(x-1)(x2-x+1)=0 \(\Leftrightarrow\) x-1=0 ( vì x2-x+1=(x-\(\frac{1}{2}\))2+\(\frac{3}{4}\)>0 với mọi x) \(\Leftrightarrow\) x=1
Ở phần b chứng minh vô nghiệm là ( x\(^4\)-2x3+x2)+(3x2-3x+\(\frac{3}{4}\))+\(\frac{5}{4}\)=0 \(\Leftrightarrow\) (x2-x)2+3(x+\(\frac{1}{2}\))2+\(\frac{5}{4}\)=0 ( vô lí)
Giải PT ax+b=0 : (3x-1)^2-3(3x-2)=9(x+1)(x-3)
\(\left(3x-1\right)^2-3\left(3x-2\right)=9\left(x+1\right)\left(x-3\right)\)
\(\Leftrightarrow9x^2-6x+1-9x+6=9\left(x^2-2x-3\right)\)
\(\Leftrightarrow9x^2-15x+7=9x^2-18x-27\)
\(\Leftrightarrow-15x+18x+7+27=0\)
\(\Leftrightarrow3x+34=0\)
\(\Leftrightarrow x=\frac{-34}{3}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{34}{3}\right\}\)
giải pt \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3x^2-3x+3}-\sqrt{x^2-3x+4}\)
Bạn tham khảo thêm ở link sau:
https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831
Giải pt: (x+1)3-(x-2)3=(3x-1)(3x+1)
(x+1)3 - (x-2)3 = (3x-1).(3x+1)
⇔ x3 + 3x2 + 3x + 1 - x3 + 6x2 - 12x + 8 = 9x2 - 1
⇔ 9x2 - 9x + 9 = 9x2 - 1
⇔ -9x = -10
⇔ x = \(\frac{10}{9}\)
S={\(\frac{10}{9}\)}
Giải pt sau:
a) 1/x-1 - 3x^2/x^3-1 = 3x/x^2+1+1
b) 1 + 1/x+2 = 12/8-x^3
c) 2x/x+2 - x/x-2 = -4x/x^2-4
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết đề như thế này gây khó đọc.
giải pt: \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)