Giải pt sau
a,\(^{x^2-6x+26=6\sqrt{2x+1}}\)
b,\(x^2+2x\sqrt{x-\dfrac{1}{x}}=3x+1\)
1,
A=\(3\sqrt{8}-\sqrt{50}-\sqrt{\sqrt{2}-1}\)
B=2\(\dfrac{2}{x-1}\sqrt{\dfrac{x^2-2x+1}{4x^2}}\) với 0<x<1
2,Giải pt
\(\sqrt{x^2-3x+2}+\sqrt{x+2}=\sqrt{x+2}+\sqrt{x^2+2x+3}\)
Giải các pt sau:
a) \(\sqrt{\dfrac{x+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
b) \(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)
giải pt : \(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}+\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}+...+\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)
Giải pt:
a) x=\(\sqrt{1-\dfrac{1}{x}}+\sqrt{x-\dfrac{1}{x}}\)
b) \(\sqrt{x^2+x}+\sqrt{x-x^2}=x+1\)
c) \(\sqrt{x^2-x}+\sqrt{x^2+2x}=2\sqrt{x^2}\)
d)\(\sqrt{\dfrac{x^3+1}{x+3}}+\sqrt{x+1}=\sqrt{x^2-x+1}+\sqrt{x+3}\)
e) \(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
f) \(4x\sqrt{x+7}+3x\sqrt{7x-3}=6x^2+2\sqrt{7x^2+46x-21}\)
Giải:
1)a) \(17\sqrt{3x-1}=3x\)
b) \(\sqrt{2+\sqrt{3x-5}}=\sqrt{x+1}\)
c)\(\sqrt{\dfrac{5x+7}{x+3}}=4\)
2)Giai pt :
a) x+y+12=\(4\sqrt{x}+6\sqrt{y}-1\)
b) \(\sqrt{x-a}+\sqrt{y-b}+\sqrt{z-c}=\dfrac{1}{2}\left(x+y+z\right)\)
c)\(\sqrt{x+\sqrt{14x-4y}}+\sqrt{x-\sqrt{14x-4y}}=\sqrt{14}\)
d)x-\(4\sqrt{2x+2}-2\sqrt{2-x+9}=0\)
giải pt \(3\sqrt{\dfrac{x-5}{2}}-2\sqrt{\dfrac{x-7}{3}}+1=\sqrt{x}\)
\(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=2\)
Giải PT vô tỉ trên
giải pt sau
a,x+y+4=2\(\sqrt{x}\)+4\(\sqrt{y-1}\)
b,\(\sqrt{x}\)+\(\sqrt{y-1}\)+\(\sqrt{z-2}\)=\(\dfrac{1}{2}\)(x+y+z)