giải pt : \(\dfrac{1}{\sqrt{x+1}+\sqrt{x+2}}+\dfrac{1}{\sqrt{x+2}+\sqrt{x+3}}+\dfrac{1}{\sqrt{x+3}+\sqrt{x+4}}+...+\dfrac{1}{\sqrt{x+2019}+\sqrt{x+2020}}=11\)
1)giải pt: 1+\(\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
2)giải pt: \(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
giải pt
1. \(\sqrt[3]{1+\sqrt{x}}+\sqrt[3]{1-\sqrt[]{x}}=1\)
2.\(\dfrac{\sqrt{x^2}-16}{\sqrt{x-3}}+\sqrt{x+3}=\dfrac{7}{\sqrt{x-3}}\)
3.\(\sqrt{14-x}-\sqrt{x-4}\sqrt{x-1}\)
4. \(3+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-2\sqrt{x-1}}\)
giải pt:
\(\sqrt{x-2}+\sqrt{y-3}+\sqrt{z-5}=\dfrac{1}{2}\left(x+y+z-7\right)\)
Giải phương trình sau:
a) \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
b) \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
c) \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
d) \(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
Bài 1: Giải phương trình
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\)
Bài 2: Cho biểu thức A = \(\dfrac{\sqrt{x}}{\sqrt{x}-3};\) B = \(\dfrac{7}{\sqrt{x}+1}-\dfrac{12}{\left(\sqrt{x}+1\right)\left(3-\sqrt{x}\right)}\) .
a) Rút gọn M = A – B
b) Tìm giá trị nguyên nhỏ nhất để biểu thức M đạt giá trị nguyên nhỏ nhất.
Giúp mình với, mình đang cần gấp ạ
Giải pt:
a)\(\sqrt{\left(4-x\right).\left(6+x\right)}=x^2-2x-12\)
b)(x+1).(x+4)=5.\(\sqrt{x^2+5x+28}\)
c)x(x+5)=2.\(\sqrt[3]{x^2+5x-2}-2\)
d)3\(\sqrt{x}+\dfrac{3}{2\sqrt{3}}=2x+\dfrac{1}{2x}-7\)
Giải pt sau: \(\dfrac{\sqrt{x+5}}{\sqrt{x-4}}\) =\(\dfrac{\sqrt{x-2}}{\sqrt{x+3}}\)
* Chứng minh đẳng thức
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=2\sqrt{x-1}\) với x ≥ 2
* Trục căn thức ở mẫu
a.\(\dfrac{1}{\sqrt{5}+\sqrt{7}}\)
b.\(\dfrac{2}{5-\sqrt{2}-\sqrt{3}}\)
c.\(\dfrac{7}{\sqrt{5}-\sqrt{3}+\sqrt{5}}\)