1. Cho x,y,z là số #0 và x+1/y=y+1/z=z+1/x
Chứng minh rằng : hoặc x=y=z hoặc x2.y2.z2=1
AI GIẢI GIÚP MÌNH , MÌNH SẼ TICK - NHANH NHANH NHA ! MÌNH CẦN GẤP LẮM
1.tìm \(x\in Z\) sao cho \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
1.tìm \(x\in Z\) sao cho \(\dfrac{x-1}{x+5}\) là 1 số nguyên
1.tìm \(x,y\in Z\) sao cho \(\left(x-1\right).\left(y-3\right)=7\) là 1 số nguyên
325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
Cho ba số x, y, z khác 0 và x + y + z ≠ 0 thỏa mãn điều kiện:
(y + z – 2x)/x = (z + x – 2y)/y = (x + y – 2z)/z. Hãy chứng tỏ A = [1 + x/y][1 + y/z][1 + z/x] là một số tự nhiên.
1.Cho x^2+ 4x+1 = 0
Tính A= ( x + 1/x )^2 + (x^2 + 1/x^2 )^2 + ( x^3+ 1/x^3 )^2
2.Cho các số thực x, y khác 0 sao cho x+ 1/y và y+ 1/x là những số nguyên . CMR x^3y^3 + 1/x^3y^3 là số nguyên.
3.Cho x,y,z khác 0 tm x(y+z)^2+y(z+x)^2+z(x+y)^2=4xyz
cho x,y,z là các số thực dương và x+y+z=xyz.Chứng minh 1+√(1+x^2)/x + 1+√(1+y^2)/y + 1+√(1+z^2)/z <= xyz
Lần sau bạn chú ý dùng chức năng Gõ công thức trực quan để người đọc dễ hiểu để bài nhé. Không hiểu không ai giúp bạn đâu.
Câu hỏi đã được hỏi nhiều lần, có thể xem tại: Cho x,y,z >0 t/m x y z=xyz. C/m \(\dfrac{1 \sqrt{1 x^2}}{x} \dfrac{1 \sqrt{1 y^2}}{y} \dfrac{1 \sqrt{1 z^2}}{z}\le xyz\) - Hoc24
Cho biết : \(x+y+z=1\)( x, y, z là số dương)
Chứng minh:
\(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\text{≤}\dfrac{3}{4}\)
Sửa đề: \(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\ge\dfrac{3}{4}\)
Đặt \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(P=\dfrac{x+1}{x+1}-\dfrac{1}{x+1}+\dfrac{y+1}{y+1}-\dfrac{1}{y+1}+\dfrac{z+1}{z+1}-\dfrac{1}{z+1}\)
\(P=1-\dfrac{1}{x+1}+1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\)
\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{4}\) ( vì \(x+y+z=1\) )
\(\Rightarrow P\ge3-\dfrac{9}{4}=\dfrac{3}{4}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(x+1=y+1=z+1\)
\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Vậy \(Max_P=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{3}\)
cho ba số x,y,z là ba số dương thoả mãn x+y+z=1
cm 1/x+1/y+1/z>=9
Cho x, y, z là các số dương thỏa mãn: x+y+z=3. Tìm GTLN của P=1/x^2+y+z + 1/y^2+x+z + 1/z^2+x+y
Cho x,y,z là các số khác 0 và \(x+\dfrac{1}{y}=y+\dfrac{1}{z}=z+\dfrac{1}{x}\). CMR: hoặc x=y=z hoặc \(x^2y^2z^2=1\)
Lời giải:
Từ đkđb suy ra:
$x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}$
$y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}$
$z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}$
$\Rightarrow (x-y)(y-z)(z-x)=\frac{(y-z)(z-x)(x-y)}{(xyz)^2}$
$\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{x^2y^2z^2})=0$
$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $1-\frac{1}{x^2y^2z^2}=1$
$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $x^2y^2z^2=1$
Nếu $(x-y)(y-z)(z-x)=0$
$\Rightarrow x=y$ hoặc $y=z$ hoặc $z=x$
Không mất tquat giả sử $x=y$. Khi đó: $\frac{1}{y}=\frac{1}{z}$
$\Rightarrow y=z$
$\Rightarrow x=y=z$. Tương tự khi xét $y=z$ hoặc $z=x$ thì ta cũng thu được $x=y=z$
Vậy $x=y=z$ hoặc $x^2y^2z^2=1$
Cho x,y,z là 3 số nguyên dương
CMR : \(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+2}\)có giá trị là 1 giá trị là 1 số không thuộc tập hợp số nguyên
Ta có: x,y,z \(\in\)Z ,nên
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
\(\Rightarrow A>1\)
\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)
\(\Rightarrow B>1\)
Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1
Do đó A < 2.Vậy 1 < A < 2
=> A có giá trị là 1 số không thuộc tập hợp số nguyên
1. Cho p>3 và p là số nguyên tố. CMR:(p-1).(p+1) chia hết cho 24.
2. Cho x, y, z thuộc Z và (x-y).(y-z).(z-x)=x+y+z
CMR: (x+y+z)chia hết cho 27
Chị sợ e kh hỉu nên chỵ làm dài dòng xíu nha. em hỉu r thi thu gọn lại bỏ bớt mấy chỗ k cần thiết
1. Vì p nguyên tố và p>3 => p không chia hết cho 3 => p=3k+1 hoặc p=3k+2
Nếu p = 3k+1 =>(p-1).(p+1) =(3k+1-1).(3k+1+1)= 3k(3k+2)
Vì 3k chia hết 3 => 3k(3k+2) chia hết cko 3. Hay(p-1).(p+1) ckia hết cho 3 (1)
Tương tự p=3k+2 =>p+1 = 3k+3 chia hết cho 3 =)( p-1)(p+1) chia hết cho 3 (2)
từ (1),(2) => (p-1)(p+1) chia het cho 3
Vì p nto và p >3 => p lẻ => p = 2h+1
Ta có (p-1).(p+1)= (2h+1-1)(2h+1+1)= 2h(2h+2)
Mà 2h và 2h+1 là tích 2 số chẵn liên tiếp => 2h(2h+2) chia hết cho 8
Mà (3,8)=1 => (p-1)(p+1) chia hết cho 24