Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
LÊ TRẦN BÁCH
Xem chi tiết
Nguyễn Bảo Liêm
2 tháng 12 2023 lúc 21:02

325253737747⁸⁹⁰⁷⁶⁵⁴³ chuyển đổi sang STN là?

ミ★Zero ❄ ( Hoàng Nhật )
4 tháng 12 2023 lúc 10:48

1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên 

= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )

= > 2 ( x + 3 ) - 5 chia hết cho x + 3 

=> -5 chia hết cho x + 3 

hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)

Đến đây em tự tìm các giá trị của x

2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )

= > - 6 chia hết cho x + 5 

= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

....

3,  ( x - 1 ) ( y - 3 ) = 7 

x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)

và ( x - 1 )( y - 3 ) = 7

( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)

(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)

( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)

( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)

Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....

Hạ Băng
Xem chi tiết
Nguyen Khanh Linh
Xem chi tiết
Sad Story
Xem chi tiết
tthnew
17 tháng 1 2021 lúc 18:40

Lần sau bạn chú ý dùng chức năng Gõ công thức trực quan để người đọc dễ hiểu để bài nhé. Không hiểu không ai giúp bạn đâu.

Câu hỏi đã được hỏi nhiều lần, có thể xem tại: Cho x,y,z >0 t/m x y z=xyz. C/m \(\dfrac{1 \sqrt{1 x^2}}{x} \dfrac{1 \sqrt{1 y^2}}{y} \dfrac{1 \sqrt{1 z^2}}{z}\le xyz\) - Hoc24

Chloe Avanche
Xem chi tiết
Nguyễn Ngọc Huy Toàn
14 tháng 4 2022 lúc 20:08

Sửa đề: \(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\ge\dfrac{3}{4}\)

Đặt \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)

\(P=\dfrac{x+1}{x+1}-\dfrac{1}{x+1}+\dfrac{y+1}{y+1}-\dfrac{1}{y+1}+\dfrac{z+1}{z+1}-\dfrac{1}{z+1}\)

\(P=1-\dfrac{1}{x+1}+1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\)

\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)

Ta có:

\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}\)

\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{4}\) ( vì \(x+y+z=1\) )

\(\Rightarrow P\ge3-\dfrac{9}{4}=\dfrac{3}{4}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(x+1=y+1=z+1\)

                               \(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

Vậy \(Max_P=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{3}\)

Trần huy huân
Xem chi tiết
s2 Lắc Lư  s2
12 tháng 11 2015 lúc 20:54

bạn thay 1 vào mấy cái tử là xong

3013 thaodoanmit
Xem chi tiết
piojoi
Xem chi tiết
Akai Haruma
27 tháng 8 2023 lúc 0:44

Lời giải:
Từ đkđb suy ra:
$x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}$

$y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}$

$z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}$

$\Rightarrow (x-y)(y-z)(z-x)=\frac{(y-z)(z-x)(x-y)}{(xyz)^2}$

$\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{x^2y^2z^2})=0$

$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $1-\frac{1}{x^2y^2z^2}=1$

$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $x^2y^2z^2=1$
Nếu $(x-y)(y-z)(z-x)=0$

$\Rightarrow x=y$ hoặc $y=z$ hoặc $z=x$

Không mất tquat giả sử $x=y$. Khi đó: $\frac{1}{y}=\frac{1}{z}$

$\Rightarrow y=z$

$\Rightarrow x=y=z$. Tương tự khi xét $y=z$ hoặc $z=x$ thì ta cũng thu được $x=y=z$
Vậy $x=y=z$ hoặc $x^2y^2z^2=1$

nguyễn minh
Xem chi tiết
Nguyễn Lê Nhật Đăng
23 tháng 11 2016 lúc 11:33

Ta có: x,y,z \(\in\)Z ,nên

\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)

\(\Rightarrow A>1\)

\(B=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{y}{x+y+z}+\frac{z}{x+y+z}+\frac{x}{x+y+z}=1\)

\(\Rightarrow B>1\)

Ta có: \(A+B=\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\) và B > 1

Do đó A < 2.Vậy 1 < A < 2

=> A có giá trị là 1 số không thuộc tập hợp số nguyên

merida2003
Xem chi tiết
Ngân Cuheoo
7 tháng 7 2015 lúc 9:57

Chị sợ e kh hỉu nên chỵ làm dài dòng xíu nha. em hỉu r thi thu gọn lại bỏ bớt mấy chỗ k cần thiết
1. Vì p nguyên tố và p>3 => p không chia hết cho 3 => p=3k+1 hoặc p=3k+2
Nếu p = 3k+1 =>(p-1).(p+1) =(3k+1-1).(3k+1+1)= 3k(3k+2) 
Vì 3k chia hết 3 => 3k(3k+2) chia hết cko 3. Hay(p-1).(p+1) ckia hết cho 3 (1)
Tương tự p=3k+2 =>p+1 = 3k+3 chia hết cho 3 =)( p-1)(p+1) chia hết cho 3 (2)
từ (1),(2) => (p-1)(p+1) chia het cho 3
Vì p nto và p >3 => p lẻ => p = 2h+1
Ta có (p-1).(p+1)= (2h+1-1)(2h+1+1)= 2h(2h+2)
Mà 2h và 2h+1 là tích 2 số chẵn liên tiếp => 2h(2h+2) chia hết cho 8
Mà (3,8)=1 => (p-1)(p+1) chia hết cho 24