Sửa đề: \(\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\ge\dfrac{3}{4}\)
Đặt \(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
\(P=\dfrac{x+1}{x+1}-\dfrac{1}{x+1}+\dfrac{y+1}{y+1}-\dfrac{1}{y+1}+\dfrac{z+1}{z+1}-\dfrac{1}{z+1}\)
\(P=1-\dfrac{1}{x+1}+1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\)
\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)
Ta có:
\(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{x+y+z+3}\)
\(\Leftrightarrow\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\ge\dfrac{9}{4}\) ( vì \(x+y+z=1\) )
\(\Rightarrow P\ge3-\dfrac{9}{4}=\dfrac{3}{4}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(x+1=y+1=z+1\)
\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)
Vậy \(Max_P=\dfrac{3}{4}\) khi \(x=y=z=\dfrac{1}{3}\)