CMR Trung điểm các cạnh của một hình thoi là các đỉnh của một hình chữ nhật
Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi
Tham khảo: https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html
* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC
=> EF là đường trung bình của tam giác ABC
* Tương tự tam giác ADC có HG là đường trung bình nên:
Từ (1) và (2) suy ra: EF // HG và EF = HG
=> tứ giác EFGH là hình bình hành.
Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF
EH // BD và EF ⊥ BD nên EF ⊥ EH
Nên
Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật
Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi.
Tham kho dưới đây nhé
https://loigiaihay.com/bai-75-trang-106-sgk-toan-8-tap-1-c43a3348.html
Xét hcn ABCD có M,N,P,Q là trung điểm AB,BC,CD,DA
Ta thấy MN,PQ lần lượt là đường trung bình tam giác ABC và ACD
Suy ra MN//AC;\(MN=\dfrac{1}{2}AC\) và PQ//AC;\(PQ=\dfrac{1}{2}AC\)
Do đó MN//PQ và MN=PQ
Hay MNPQ là hbh
Lại có NP là đtb tg BCD nên \(NP=\dfrac{1}{2}BD\)
Mà ABCD là hcn nên \(NP=\dfrac{1}{2}BD=\dfrac{1}{2}AC=MN\)
Vậy MNPQ là hthoi (đpcm)
Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi.
* Xét tam giác ABD có E và H lần lượt là trung điểm của AB và AD
=> EH là đường trung bình của tam giác
* Chứng minh tương tự, ta có:
* Lại có, ABCD là hình chữ nhật nên AC = BD (3)
Từ (1), (2), (3) suy ra: EF = FG = GH= HE
=> tứ giác EFGH là hình thoi.
Chứng minh rằng các trung điểm của bốn cạnh của một hình thoi là các đỉnh của một hình chữ nhật.
* Xét tam giác ABC có E và F lần lượt là trung điểm của AB và BC
=> EF là đường trung bình của tam giác ABC
* Tương tự tam giác ADC có HG là đường trung bình nên:
Từ (1) và (2) suy ra: EF // HG và EF = HG
=> tứ giác EFGH là hình bình hành.
Lại có: EF // AC và BD ⊥ AC nên BD ⊥ EF
EH // BD và EF ⊥ BD nên EF ⊥ EH
Nên
Hình bình hành EFGH có Ê = 90º nên là hình chữ nhật
Chứng minh rằng trung điểm các cạnh của một hình thoi là đỉnh của một hình chữ nhật.
Giả sử hình thoi ABCD. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
* Trong ∆ ABC, ta có:
E là trung điểm của AB
F là trung điểm của BC
Nên EF là đường trung bình của ∆ ABC.
⇒ EF // AC và EF = 1/2 AC (t/chất đường trung bình của tam giác) (1)
* Trong ∆ ADC, ta có: H là trung điểm của AD
G là trung điểm của CD
Nên HG là đường trung bình của tam giác ADC
⇒ HG // AC và HG = 1/2 AC (t/chất đường trung bình của tam giác) (2)
Từ (1) và (2) suy ra: EF // HG và EF = HG
Suy ra tứ giác EFGH là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)
Mặt khác: AC ⊥ BD (tính chất hình thoi)
EF // AC (chứng minh trên)
Chứng minh rằng các trung điểm của bốn cạnh một hình thoi là các đỉnh của một hình chữ nhật ?
Bài giải:
Ta có: EB = EA, FB = FA (gt)
nên EF là đường trung bình của ∆ABC.
Do đó EF // AC
HD = HA, GD = GC (gt)
nên HG là đường trung bình của ∆ADC.
Do đó HG // AC
Suy ra EF // HG (1)
Chứng minh tương tự EH // FC (2)
Từ (1) (2) ta được EFGH là hình bình hành.
Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF
EH // BD và EF ⊥ BD nên EF ⊥ EH
nên ˆFEHFEH^ = 900
Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.
Bài giải:
Ta có: EB = EA, FB = FA (gt)
nên EF là đường trung bình của ∆ABC.
Do đó EF // AC
HD = HA, GD = GC (gt)
nên HG là đường trung bình của ∆ADC.
Do đó HG // AC
Suy ra EF // HG (1)
Chứng minh tương tự EH // FC (2)
Từ (1) (2) ta được EFGH là hình bình hành.
Lại có EF // AC và BD ⊥ AC nên BD ⊥ EF
EH // BD và EF ⊥ BD nên EF ⊥ EH
nên ˆFEHFEH^ = 900
Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.
Bài giải:
Ta có: EB=EA,FB=FAEB=EA,FB=FA (gt)
nên EFEF là đường trung bình của ΔABC∆ABC.
Do đó EF//ACEF//AC
HD=HA,GD=GCHD=HA,GD=GC (gt)
nên HGHG là đường trung bình của ΔADC∆ADC.
Do đó HG//ACHG//AC
Suy ra EF//HGEF//HG (1)
Chứng minh tương tự EH//FGEH//FG (2)
Từ (1) (2) ta được EFGHEFGH là hình bình hành.
Lại có EF//ACEF//AC và BD⊥ACBD⊥AC nên BD⊥EFBD⊥EF
EH//BDEH//BD và EF⊥BDEF⊥BD nên EF⊥EHEF⊥EH
nên ˆFEH=900FEH^=900
Hình bình hành EFGHEFGH có ˆE=900E^=900 nên là hình chữ nhật.
Chứng minh rằng các trung điểm của bốn cạnh của một hình thoi là các đỉnh của một hình chữ nhật.
Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của một hình thoi ?
Bài giải:
Bốn tam giác vuông EAH, EBF, GDH, GCF có:
AE = BE = DG = CG
( = 1212AB = 1212CD)
HA = FB = DH = CF
( = 1212AD = 1212BC)
Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)
Suy ra EH = EF = GH = GF
Vậy EFGH là hình thoi (theo định nghĩa)
Bốn tam giác vuông EAH, EBF, GDH, GCF có:
AE = BE = DG = CG
( = 12AB = 12CD)
HA = FB = DH = CF
( = 12AD = 12BC)
Nên ∆EAH = ∆EBF = ∆GDH = ∆GCF (c.g.c)
Suy ra EH = EF = GH = GF
Vậy EFGH là hình thoi (theo định nghĩa)
Hình thoi có hai đường chéo là 8 cm và 12 cm. Một hình chữ nhật có các đỉnh là trung điểm của các cạnh hình thoi. Diện tích hình chữ nhật là