Tìm x , y E Z biết :
1/.xy +14+2y+7x =-10
2/.xy+5x+y=4
Tìm x,y thuộc Z,biết : a) xy+5x+y=4 b)xy+14+2y+7x=-10 c)xy+x+y=2.
`a)xy+5x+y=4`
`=>x(y+5)+y+5=9`
`=>(y+5)(x+1)=9`
Vì `x,y in ZZ`
`=>x+1,y+5 in ZZ`
`=>x+1,y+5 in Ư(9)={+-1,+-3,+-9}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
`b)xy+14+2y+7x=0`
`=>y(x+2)+7(x+2)=0`
`=>(x+2)(y+7)=0`
`=>` \(\left[ \begin{array}{l}x=-2\\y=-7\end{array} \right.\)
`c)xy+x+y=2`
`=>x(y+1)+y+1=3`
`=>(x+1)(y+1)=3`
Vì `x,y in ZZ`
`=>x+1,y+1 in ZZ`
`=>x+1,y+1 in Ư(3)={+-1,+-3}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
Giải:
a) \(xy+5x+y=4\)
\(\Rightarrow x.\left(y+5\right)+\left(y+5\right)=9\)
\(\Rightarrow\left(x+1\right).\left(y+5\right)=9\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+5\right)\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng giá trị:
x+1 | -9 | -3 | -1 | 1 | 3 | 9 |
y+5 | -1 | -3 | -9 | 9 | 3 | 1 |
x | -10 | -4 | -2 | 0 | 2 | 8 |
y | -6 | -8 | -14 | 4 | -2 | -4 |
Vậy \(\left(x;y\right)=\left\{\left(-10;-6\right);\left(-4;8\right);\left(-2;-14\right);\left(0;4\right);\left(2;-2\right);\left(8;-4\right)\right\}\)
b) \(xy+14+2y+7x=-10\)
\(\Rightarrow y.\left(x+2\right)+7x+14=-10\)
\(\Rightarrow y.\left(x+2\right)+7.\left(x+2\right)=-10\)
\(\Rightarrow\left(x+2\right).\left(y+7\right)=-10\)
\(\Rightarrow\left(x+2\right)\) và \(\left(y+7\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng giá trị:
x+2 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
y+7 | 1 | 2 | 5 | 10 | -10 | -5 | -2 | -1 |
x | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
y | -6 | -5 | -2 | 3 | -17 | -12 | -9 | -8 |
Vậy \(\left(x;y\right)=\left\{\left(-12;-6\right);\left(-7;-5\right);\left(-4;-2\right);\left(-3;3\right);\left(-1;-17\right);\left(0;-12\right);\left(3;-9\right);\left(8;-8\right)\right\}\)
c) \(xy+x+y=2\)
\(\Rightarrow x.\left(y+1\right)+\left(y+1\right)=3\)
\(\Rightarrow\left(x+1\right).\left(y+1\right)=3\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x+1 | -3 | -1 | 1 | 3 |
y+1 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -2 | -4 | 2 | 0 |
Vậy \(\left(x;y\right)=\left\{\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\right\}\)
Chúc bạn học tốt!
Tìm x,y thuộc Z biết:
1/ xy+14+2y+7x= -10
2/ xy+5x+y=4
3/ xy-1=3x+5y+4
6.............................................................................7
1/ xy+14+2y+7x=-10
y(x+2)+7(x+2)=-10
(x+2)(y+7)=-10
suy ra x+2, y+7 thuộc ước -10
rồi vẽ bảng xét từng giá trị là đc, còn ấy câu kia thì phân tích thành nhân tử rồi lm như bình thường
2/xy+5x+y=4
x(y+5)+y=4
x(y+5)+(y+5)=9
(y+5)(x+1)=9
9=1.9
= 9.1
=(-1).(-9)
= (-9).(-1)
Tu lam not nhe
B1 :tìm x, y
a, xy+x+y=2
b, xy-10+5x-3y=2
c, xy-1=3x+5y+4
d, 3x+4y-xy=15
e, xy+5x+y+4
Các bn nhớ giải rõ giúp mik, phần lập bảng giá trị mik sẽ tự làm, ví dụ như mẫu sau:
VD: xy+14+2y+7x=-10
=(xy + 2y) + ( 14+7x) = -10
= y(2+x) + 7(2+x) = -10
(2+x) . ( y+7) =10 { phần bảng giá trị mik sẽ tự làm tiếp)
xy+14+2y+7x=-10
xy+5x+y=4
xy+x+y=2
xy-10+5x-3y=2
xy-1=3x+5y+4
3x+4y-xy=15
xy+x+y=2
xy+x+y+1=2+1
(xy+x)+(y+1)=3
x(y+1)+(y+1)=3
(x+1)(y+1)=3=1.3=3.1=-1.-3=-3.-1
\(\Rightarrow\left[{}\begin{matrix}x+1=1;y+1=3\\x+1=3;y+1=1\\x+1=-1;y+1=-3\\x+1=-3;y+1=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0;y=2\\x=2;y=0\\x=-2;y=-4\\x=-4;y=-2\end{matrix}\right.\)
Vậy:.................
xy+14+2y+7x= -10
\(\Leftrightarrow\)y(x+2)+7(x+2)=-10
\(\Leftrightarrow\)(y+7)(x+2)=-10=1.(-10)=2.(-5)=5.(-2)=10.(-1)
y+7 | 1 | 2 | 5 | 10 |
x+2 | -10 | -5 | -2 | -1 |
y | -6 | -5 | -2 | 3 |
x | -12 | -7 | -4 | -3 |
tìm x,y thuộc z biết:
a) xy - 5x - 5y = 0
b)7x - xy + 2y = 18
Tìm x,y biết:
a)(x-4).(y+3) = -3
b)xy+14+2y+7x= -10
c)xy+5x+y=4
AI GIẢI ĐƯỢC TICK CHO
dài lắm; x=3 y=0
x=1 y=-2..................................................
tìm x,y thuộc z biết:
a) xy - 5x - 5y = 0
b)7x - xy + 2y = 18
c) (x-1) . (x+y) = 23
Giúp mình đi mà!!!!!!!!!!!!!
Câu a : đáp số là tịt
Câu b ; đáp số là botay.com
Câu c là tịt và botay.com
c,(x-1)(x+y)=23
Vì x;y thuộc Z nên x-1 thuộc Z;x+y thuộc Z
suy ra x+1;x+y thuộc Ư(23)={1;-1;23;-23}
bạn thay mỗi số trên vào x-1 và x+y rồi ngược lại là ra kết quả mà.
k cho mk nha!!!
Tìm x,y thuoc Z
a) x + xy + y=4
b) xy=x+y
c) xy+5x-2y=19
d) x+xy+y=6
e) 197xy-x-y=0
a. x+xy+y=4
<=> x+xy+1+y=1+4
<=> x(1+y)+(1+y)=5
<=> (1+y)(x+1)=5
Vì x,y thuộc Z nên 1+y và x+1 là ước của 5. Ta có bảng sau:
x+1 | -5 | -1 | 1 | 5 |
x | -6 | -2 | 0 | 4 |
1+y | -1 | -5 | 5 | 1 |
y | -2 | -6 | 4 | 0 |
Vậy...
1.tìm điều kiện xác định của các bt sau
a,5x^2y/x+4 b,3x-2y/2x-1 c,5x^2/x(y-3) d,4x^3y/x^2-4y^2 e,2x+1/(5-x)(y+2)
2.rút gọn các phân thức
a,-12x^3y^2/-20x^2y^2 b,x^2+xy-x-y/x^2-xy-x+y c,7x^2-7xy/y^2-x^2 d,7x^2+14x+7/3x^2+3x e,3y-2-3xy+2x/1-3x-x^3+3x^2
f,x^10-x^8+x^6-x^4+x^2+1/x^4-1 g,x^2+7x+12/x^2+5x+6
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)