g) x^2 -x-y^2-y
h) 2x^2-6x
k) x^3-3x^2 -4x+12
c) x^2v-2xy+y^2-z^2
a) ( x+3 ) * ( x^2 - 3x +9 ) - ( 54+ x^3 )
b) ( 2x + y ) * ( 4x^2 - 2xy + y^2 ) - ( 2x - y ) * ( 4x^2 + 2xy + y^2 )
c) ( a+b ) ^3 - ( a-b ) ^3 - 2b^3
d) ( x+y+z ) ^ 2 - 2 * ( x+y+z ) * ( x+y ) + y^2 + ( x + y ) ^ 2
a) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
\(=-27\)
b) \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=\left(8x^3+y^3\right)-\left(8x^3-y^3\right)\)
\(=8x^3+y^3-8x^3+y^3\)
\(=2y^3\)
c) \(\left(a+b\right)^3-\left(a-b\right)^3-2b^3\)
\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)-\left(a-b\right)^2\right]-2b^3\)
\(=\left(a+b-a+b\right)\left[\left(a^2+2ab+b^2\right)+\left(a^2-ab+ab-b^2\right)-\left(a^2-2ab+b^2\right)\right]-2b^3\)
\(=b^2\left(a^2+2ab+b^2+a^2-ab+ab-b^2-a^2+2ab-b^2\right)-2b^3\)
....
Phân tích các đa thức sau thành nhân tử:
a) 2x^2 - 2xy - 5x +5y ; b) 8x^2 + 4xy - 2ax - ay
c) x^3 - 4x^2 + 4x ; d) 2xy - x^2 - y^2 + 16
e) x^2 - y^2 - 2yz - z^2; g) 3a^2 - 6ab + 3b^2 - 12c^2
a) 2x^2 - 2xy - 5x +5y
= (2x^2 - 2xy ) - ( 5x- 5 y)
=2x(x-y) - 5(x-y)
=(x- y). (2x- 5)
b)8x2 +4xy-2ax-ay
=(8x2 +4xy) -(2ax+ay)
=4x(2x+y)-a(2x+y)
=(2x+y).(4x-a)
c)=x(x2 -4x +4)
=x(x-2)2
d)=16- (x2 -2xy +y^2)
=4^2-(x-y)^2
=(4-x+y).(4+x-y)
các câu còn lại tg tự
chúc bn hok tốt
Phân tích đa thức thành nhân tử:
a) x^2y + 2xy^2 + xy
b) x^3 + x^2 – 4x – 4
c) x^2 – 2x – 15
d) x^2 – 4 + (x – 2)^2
e) x^2 – y^2 + 2x + 1
g) (x + 9)^2 – 36x^2
h) x^2 – 2xy + y^2 – z^2 + 2zt – t^2
i) x^3 – 3x^2 + 3x – 1 – y^3
\(a,=xy\left(x+2y+1\right)\\ b,=x^2\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-2\right)\left(x+2\right)\\ c,=x^2-5x+3x-15=\left(x-5\right)\left(x+3\right)\\ d,=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2=\left(x-2\right)\left(x+2+x-2\right)=2x\left(x-2\right)\\ e,=\left(x+1\right)^2-y^2=\left(x+y+1\right)\left(x-y+1\right)\\ g,=\left(x+9-6x\right)\left(x+9+6x\right)=\left(9-5x\right)\left(7x+9\right)\\ h,=\left(x-y\right)^2-\left(z-t\right)^2=\left(x-y-z+t\right)\left(x-y+z-t\right)\\ i,=\left(x-1\right)^3-y^3=\left(x-y-1\right)\left(x^2-2x+1+xy+y+y^2\right)\)
c: =(x-5)(x+3)
e: =(x+1-y)(x+1+y)
a) x^2+2xy+y^2-16
b) 3x^2+5x-3xy-5y
c) 4x^2-6x^3y-2x^2+8x
d) x^2-4-2xy+y^2
e) x^3-4x^2-12x+27
g) 3x^2-18x+27
h) x^2-y^2-z^2-2yz
k) 4x^2(x-6)+9y^2(6-x)
l)6xy+5x-5y-3x^2-3y^2
a) x^2+2xy+y^2-16
=(x+y)2-16
=(x+y-4)(x+y+4)
b) 3x^2+5x-3xy-5y
=(3x2-3xy)+(5x-5y)
=3x(x-y)+5(x-y)
=(x-y)(3x+5)
c) 4x^2-6x^3y-2x^2+8x
ko bik hoặc sai đề
d) x^2-4-2xy+y^2
=(x-y)2-4
=(x-y+2)(x-y-2)
e) x^3-4x^2-12x+27
=sai đề
g) 3x^2-18x+27
=3(x2-6x+9)
=3(x-3)2
h) x^2-y^2-z^2-2yz
=x2-(y2+z2+2yx)
=x2-(y+z)2
=(x-y-z)(x+y+z)
k) 4x^2(x-6)+9y^2(6-x)
=4x2(x-6)-9y2(x-6)
=(x-6)(4x2-9y2)
=(x-6)(2x-3y)(2x+3y)
l)6xy+5x-5y-3x^2-3y^2
=(5x-5y)+(-3x2+6xy-3y2)
=5(x-y)-3(x2-2xy+y2)
=5(x-y)-3(x-y)2
=(x-y)(5-3(x-y))
=(x-y)(5-3x+3y)
e)\(\dfrac{2xy-x^2+z^2-y^2}{x^2+2-y^2+2xz}=\)
g)\(\dfrac{x^3+2x^2-x-z}{x^3-3x+2}=\)
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Rút gọn biểu thức sau
(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2
2.Tính
a)(2+xy)^2
b) (5-3x)^2
c) (5-x^2)(5+x^2)
d) (5x-1)^3
e) (2x-y)(4x^2+2xy+y^2)
3.Rút gọn các biểu thức sau:
a) (a+b)^2 -(a-b)^2
b) (a+b)^3 -(a-b)^3-2b^3
c) (x+y+z)^2 -2(x+y+z)(x+y)+(x+y)^2
P/s:giúp mình giải nhé!!! giải theo 7 hằng đẳng thức đáng nhớ.
Bài 1:
a,(2+xy)^2=4+4xy+x^2y^2b,(5-3x)^2=25-30x+9x^2d,(5x-1)^3=125x^3 - 75x^2 + 15x^2 - 1rút gọn biểu thức
a)(x+3)(X^2-3x+9)-(54+x^3)
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
a) (x+3)(x^2-3x+9)-(54+x^3)
= x^3- 3x^2+9x+3x^2-9x+27-54-x63
= -27
b) (2x + y)(4x^2 – 2xy + y^2) – (2x – y)(4x^2+ 2xy + y^2)
= (2x + y)[(2x)^2 – 2x.y + y^2] – (2x – y)[(2x)^2 + 2x.y + y^2]
= [(2x)3^3+ y^3] – [(2x)^3 – y^3]
= (2x)^3 + y^3 – (2x)^3 + y^3
= 2y^3
a)(x+3)(X^2-3x+9)-(54+x^3)
= \(x^3\)+ \(3^3 \) - 54 -\(x^3\)
= 27- 54
= -27
b)(2x+y)(4x^2-2xy+y^2)-(2x-y)(4x^2+2xy+y^2)
= \((2x)^3\) + \(y^3\) - [\((2x)^3\) - \(y^3\) ]
= \(8x^3\) + \(y^3\) - \(8x^3\) + \(y^3\)
= \(2y^3\)
a) Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)
\(=x^3+27-54-x^3\)
=-27
Phân tích thành nhân tử
1) 5x-5y+x(x-y)
2) x^2+4x+3
3) x^2-2xy+y^2-z^2
4) x(x-5)-3x+15
5) y^2-x^2+2x-1
6) 7x^2y+14y+7
7) x^3+x^2-4x-4
8) x^2-2x-15
9) x^2+3y-5
10) 2xy+z+2x+yz
1) \(5x-5y+x\left(x-y\right)\)
\(=5\left(x-y\right)+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x+5\right)\)
2) \(x^2+4x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
3) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
4) \(x\left(x-5\right)-3x+15\)
\(=x\left(x-5\right)-3\left(x-5\right)\)
\(=\left(x-5\right)\left(x-3\right)\)
5) \(y^2-x^2+2x-1\)
\(=y^2-\left(x^2-2x+1\right)\)
\(=y^2-\left(x-1\right)^2\)
\(=\left(x+y-1\right)\left(y-x+1\right)\)
\(1.\left(x-y\right)\left(x+5\right)\)
\(2.\left(x+1\right)\left(x+3\right)\)
\(3.\left(x-y-z\right)\left(x-y+z\right)\)
\(4.\left(x-3\right)\left(x-5\right)\)
\(5.\left(y-x+1\right)\left(y+x+1\right)\)
\(7.\left(x+1\right)\left(x-2\right)^2\)
\(8.\left(x-5\right)\left(x+3\right)\)
\(10.\left(y+1\right)\left(2x+z\right)\)
Phân tích thành nhân tử
1) 5x-5y+x(x-y)
2) x^2+4x+3
3) x^2-2xy+y^2-z^2
4) x(x-5)-3x+15
5) y^2-x^2+2x-1
6) 7x^2y+14y+7
7) x^3+x^2-4x-4
8) x^2-2x-15
9) x^2+3y-5
10) 2xy+z+2x+yz
1)
5x - 5y + x ( x - y ) = (x-y)(5+x)
2)
x2+4x+3=x2+x+3x+3=(x+1)(x+3)
3)x2-2xy+y2-z2=\(\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
4)\(x\left(x-5\right)-3x+15=\left(x-3\right)\left(x-5\right)\)
tt thôi nha dài lắmTruong minh quan cái này dễ mà cũng hỏi