Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a) HA. HD = HB. HE
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a) HA. HD=HB. HE=HC. HF
b) AHAD+BH.BE+CH.CF=(AB²+BC²+CA²)
c) H là giao điểm 3 đường phân giác của tam giác DEF.
Giải chi tiết
a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có
\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔHFA~ΔHDC
=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)
=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)
=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)
c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)
nên AFHE là tứ giác nội tiếp
Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)
nên BFHD là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)
\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)
mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)
nên \(\widehat{EFH}=\widehat{DFH}\)
=>FH là phân giác của góc EFD
Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)
\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)
mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)
nên \(\widehat{FEH}=\widehat{DEH}\)
=>EH là phân giác của góc FED
Xét ΔFED có
EH,FH là các đường phân giác
Do đó: H là giao điểm của ba đường phân giác trong ΔFED
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF cắt nhau tại H. Chứng minh:
a) HA. HD = HB. HE = HC. HF
b) AH.AD + BH.BE + CH.CF = \(\dfrac{1}{2}\)(AB2 + BC2 + CA2)
c) H là giao điểm 3 đường phân giác của tam giác DEF.
Cho tam giác ABC nhọn có ba đường cao AD, BE, CF với H là trực tâm. Chứng minh tam giác AHE đồng dạng tam giác BHD; Chứng minh HA . HD = HB . HE
Xét ∆AHE và ∆BHD, ta có
<D=<E=90°
<BHD=<EHA ( đối đỉnh)
⟹ ∆AHE ∼∆BHD(g.g)
⟹HA/HB=HE/HD⟹ HA*HD=HB*HE
Cho tam giác ABC có đường cao AD,BE,CF cắt nhau tại H.
CMR: HA + HB + HC ≥ 2(HD + HE + HF)
Đây là 1 trường hợp của BĐT hình học quan trọng: BĐT Erdos-Mordell
Cách chứng minh bài này y hệt như cách người ta chứng minh BĐT nói trên.
Có khoảng gần 20 cách gì đó, em kiếm trên google thử coi, vì BĐT này quá quen thuộc rồi nên mình sẽ ko chứng minh lại ở đây.
Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).
a)Chứng minh: HD/AD+HE/BE+HF/CF=1
b) Tính HA/AD+HB/BE+HC/CF
Cho tam giác abc có ba góc nhọn các đường cao AD, BE, CF cắt nhau tại H. Chứng minh rằng
a) ΔABE đồng dạng với ΔACF
b) HE.HB=HF.HC và ΔFHE đồng dạng với ΔBHC
c) H là giao điểm các đường phân giác của ΔDEF
d) \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
e) BH.BE+AH.AD=AB2
Giúp mình với mọi người!!!
< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
c: góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
góc HDC+góc HEC=180 độ
=>HECD nội tiếp
góc HFB+góc HDB=180 độ
=>HFBD nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
góc BAD=góc FCB
=>góc FEH=góc DEH
=>EH là phân giác của góc FED(1)
góc EFH=góc DAC
góc DFC=góc EBC
góc DAC=góc EBC
=>góc EFH=góc DFH
=>FH là phân giác của góc DFE(2)
Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔDEF
e: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có
góc EBA chung
=>ΔBFH đồng dạng với ΔBEA
=>BH*BE=BF*BA
Xet ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng với ΔADB
=>AH*AD=AF*AB
=>BH*BE+AH*AD=AB^2
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
Cho tam giác nhọn ABC có ba đường cao AD, BE,CF cắt nhau tại H. Gọi M, N, P, Q, R, S lần lượt là trung điểm các đoạn thẳng BC, CA, AB, HA, HB, HC. Các đường trung trực của tam giác ABC cắt nhau tại O.
a) BHCK, AQMO là hình gì?
b) Chứng minh PQRS, MNQR, NPRS là hình chữ nhật
c) Chứng minh MQ, OH, RN đồng quy tại 1 điểm.
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
Cho tam giac ABC có 3 góc nhọn . Đường cao AD,BE của tam giác ABC cắt nhau tại H.
a) chứng minh: tam giác ADC đồng dạng tam giác BEC
b)Chứng minh : HA*HD=HB*HE
c) đường phân giác của góc ACB cắt đường cao EF của tam giác EBC và đoạn thẳng BE lần lượt tại N và M. Chứng minh NF/NE=ME/MB