< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
c: góc AFH+góc AEH=180 độ
=>AFHE nội tiếp
góc HDC+góc HEC=180 độ
=>HECD nội tiếp
góc HFB+góc HDB=180 độ
=>HFBD nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
góc BAD=góc FCB
=>góc FEH=góc DEH
=>EH là phân giác của góc FED(1)
góc EFH=góc DAC
góc DFC=góc EBC
góc DAC=góc EBC
=>góc EFH=góc DFH
=>FH là phân giác của góc DFE(2)
Từ (1), (2) suy ra H là tâm đường tròn nội tiếp ΔDEF
e: Xét ΔBFH vuông tại F và ΔBEA vuông tại E có
góc EBA chung
=>ΔBFH đồng dạng với ΔBEA
=>BH*BE=BF*BA
Xet ΔAFH vuông tại F và ΔADB vuông tại D có
góc FAH chung
=>ΔAFH đồng dạng với ΔADB
=>AH*AD=AF*AB
=>BH*BE+AH*AD=AB^2