cho a,b,c là các số dương và a+b+c=6.CMR
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{2}\)
cho a,b,c là các số dương và a+b+c = 6
CMR \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{2}\)
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\sqrt{\frac{a}{3b^2+1}}+\sqrt{\frac{b}{3c^2+1}}+\sqrt{\frac{c}{3a^2+1}}\ge\frac{3}{2}\)
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Cho a,b,c là 3 số dương t/m: a+b+c=3
CMR:\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
#)Giải :
Áp dụng BĐT Cauchy : \(\hept{\begin{cases}\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab}{2}\\\frac{b}{1+c^2}=b-\frac{bc^2}{1+c^2}\ge b-\frac{bc}{2}\\\frac{c}{1+a^2}=c-\frac{ca^2}{1+a^2}\ge c-\frac{ca}{2}\end{cases}}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{6}\left(a+b+c\right)^2=\frac{3}{2}\)
\(\Rightarrow\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\left(đpcm\right)\)
Theo BĐT AM-GM:
\(\frac{a}{1+b^2}\)=a-\(\frac{ab^2}{1+b^2}\)\(\ge\)a-\(\frac{ab^2}{2b}\)=a-\(\frac{ab}{2}\)
Tương tự: \(\frac{b}{1+c^2}\)\(\ge\)b-\(\frac{bc}{2}\);\(\frac{c}{1+a^2}\)\(\ge\)c-\(\frac{ca}{2}\)
Suy ra \(\frac{a}{1+b^2}\)+\(\frac{b}{1+c^2}\)+\(\frac{c}{1+a^2}\)\(\ge\)a+b+c-\(\frac{1}{2}\)(ab+bc+ca)
Mặt khác thì theo BĐT AM-GM:9=a2+b2+c2+2(ab+bc+ca)
=\(\frac{a^2+b^2}{2}\)+\(\frac{b^2+c^2}{2}\)+\(\frac{c^2+a^2}{2}\)+2(ab+bc+ca)\(\ge\)3(ab+bc+ca)
\(\Rightarrow\)\(\frac{1}{2}\)(ab+bc+ca)\(\le\)\(\frac{3}{2}\)
Cho nên \(\frac{a}{1+b^2}\)+\(\frac{b}{1+c^2}\)+\(\frac{c}{1+a^2}\)\(\ge\)a+b+c-\(\frac{3}{2}\)=3-\(\frac{3}{2}\)=\(\frac{3}{2}\)
Cho a,b,c là các số thực dương
CMR:
1) \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b}{b+c}+\frac{b+c}{a+b}+1\)
1) Áp dụng bđt \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\) :
Ta có : \(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)
Cho 3 số dương a,b,c thỏa mãn a+b+c = 6.CMR
\(\frac{1}{\sqrt{a+b}}+\frac{1}{\sqrt{b+c}}+\frac{1}{\sqrt{c+a}}\ge\frac{3}{2}\)
\(VT=\frac{4}{2.2\sqrt{a+b}}+\frac{4}{2.2\sqrt{b+c}}+\frac{4}{2.2\sqrt{c+a}}\)
\(VT\ge\frac{4}{a+b+4}+\frac{4}{b+c+4}+\frac{4}{c+a+4}\)
\(VT\ge\frac{36}{a+b+4+b+c+4+c+a+4}=\frac{36}{24}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Cho a,b,c là các số dương thỏa mãn a+b+c=3. CMR
\(\frac{1}{2a^2+3}+\frac{1}{2b^2+3}+\frac{1}{2c^2+3}\ge\frac{3}{5}\)
Cho a,b,c là các số thực dương thỏa mãn a^2+b^2+c^2=3
CMR \(\frac{1}{1+a^2b^2}+\frac{1}{1+b^2c^2}+\frac{1}{1+c^2a^2}\ge\frac{9}{2\left(a+b+c\right)}\)
mong các bạn và thầy cô giúp đỡ ạ!