\(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{x-3}{x+1}\)
rut gon
(\(\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{x-3}{\sqrt{x-1}-\sqrt{2}})\left(\dfrac{2}{2-\sqrt{x}}-\dfrac{\sqrt{x}+\sqrt{2}}{2\sqrt{x}-x}\right)\)
Rut gon bieu thuc
\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}+\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{2}\right)}{-\sqrt{x}}\)
cho A = \(\left(\dfrac{\sqrt{x+1}}{\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{5\sqrt{x}+2}{4-x}\right):\dfrac{3\sqrt{x}-x}{x+4\sqrt{x}+4}\)
rut gon A
\(A=\dfrac{-\left(\sqrt{x}+1\right)\left(2+\sqrt{x}\right)-2\sqrt{x}\left(2-\sqrt{x}\right)+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}\left(3-\sqrt{x}\right)}{\left(\sqrt{x}+2\right)^2}\)
\(A=\dfrac{-3\sqrt{x}-x-2-4\sqrt{x}+2x+5\sqrt{x}+2}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(A=\dfrac{-x-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\left(\sqrt{x}+2\right)^2}{\sqrt{x}\left(3-\sqrt{x}\right)}\)
\(A=\dfrac{-\sqrt{x}\left(\sqrt{x}+2\right)^3}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{-\left(\sqrt{x}+2\right)^2}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)
\(A=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x+2}\right)^2}{-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\sqrt{x}\left(3-\sqrt{x}\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\)
rut gon pt
\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\sqrt{x}\)
\(P=\left(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\right).\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
a, rut gon
b, tim x de P=\(\sqrt{x}\)
a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)
b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)
\(\Leftrightarrow x+2\sqrt{x}=0\)
hay x=0
cho P=\(\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\\ \)
a, rut gon
b, tim x de P=\(\sqrt{x}-1\)
a/ ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
= \(\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)
b/ Với \(x\ge0,x\ne1\)
Để \(P=\sqrt{x}-1\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)
\(\Leftrightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow x-4\sqrt{x}-1=0\)
\(\Leftrightarrow\left(\sqrt{x}-2+\sqrt{5}\right)\left(\sqrt{x}-2-\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2+\sqrt{5}=0\\\sqrt{x}-2-\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\left(ktm\right)\\\sqrt{x}=2+\sqrt{5}\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow x=9+4\sqrt{5}\)
Vậy để \(P=\sqrt{x}-1\) thì \(x=9+4\sqrt{5}\)
\(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
a, rut gon A
b, tinh A voi \(4-2\sqrt{3}\)
\(ĐKXĐ:x\ge0,x\ne1\)
= \(\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
= \(\dfrac{x+2+\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
= \(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) (1)
b/ Ta có: \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)
Thay \(x=\left(\sqrt{3}-1\right)^2\) vào (1) ta được:
\(\dfrac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\left(\sqrt{3}-1\right)^2+\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)= \(\dfrac{\sqrt{3}-1}{4-2\sqrt{3}+\sqrt{3}-1+1}=\dfrac{\sqrt{3}-1}{4-\sqrt{3}}\) = \(\dfrac{\left(\sqrt{3}-1\right)\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}=\dfrac{3\sqrt{3}-1}{13}\)
Vậy giá trị của A khi \(x=4-2\sqrt{3}\) là \(\dfrac{3\sqrt{3}-1}{13}\)
\(p=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x+2}{\left(x-1\right)\left(x+\sqrt{x}+1\right)}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)
=\(\dfrac{x-\sqrt{x}}{x\sqrt{x}-1}\)
=\(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
=\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)
học tốt nhé anh trai
A = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-3.\left(\dfrac{\sqrt{x}+3}{x-9}\right)\right):\left(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}-1\right)\)
a) Rut gon A
b) Tim GTNN cua A
Bai tap: Cho:
\(A=\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
a) Rut gon
b) Tinh gia tri cua A voi \(x=1\dfrac{1}{3}\)
Câu a : \(A=\left(\dfrac{1}{x+\sqrt{x}}+\dfrac{1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{x+2\sqrt{x}+1}+1\)
\(=\dfrac{1}{\sqrt{x}}\times\dfrac{x+2\sqrt{x}+1}{\sqrt{x}-1}+1\)
\(=\dfrac{x+2\sqrt{x}+1}{x-\sqrt{x}}+1\)
\(=\dfrac{x+2\sqrt{x}+1}{x-\sqrt{x}}+\dfrac{x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{2x+\sqrt{x}+1}{x-\sqrt{x}}\)
Câu b : Thay \(x=1\dfrac{1}{3}=\dfrac{4}{3}\) vào A ta được :
\(A=\dfrac{2.\dfrac{4}{3}+\sqrt{\dfrac{4}{3}}+1}{\dfrac{4}{3}-\sqrt{\dfrac{4}{3}}}=\dfrac{\dfrac{8}{3}+\dfrac{2\sqrt{3}}{3}+\dfrac{3}{3}}{\dfrac{4}{3}-\dfrac{2\sqrt{3}}{3}}=\dfrac{\dfrac{11+2\sqrt{3}}{3}}{\dfrac{4-2\sqrt{3}}{3}}=\dfrac{11+2\sqrt{3}}{4-2\sqrt{3}}\)
Chúc bạn học tốt
\(\dfrac{1}{\sqrt{x}-1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{1}{x-\sqrt{x}+1}\)
a) Rut gon
b) Tim gia tri cua x de C < 1
a: \(C=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{1}{x-\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+1-3+\sqrt{x}+1}{x\sqrt{x}+1}\)
\(=\dfrac{x-1}{x\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}\)
b: Để C<1 thì C-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-x+\sqrt{x}-1}{x-\sqrt{x}+1}< 0\)
=>\(-x+2\sqrt{x}-2< 0\)(luôn đúng)
Cho Bt C=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)\)
Rut gon C
tim x sao cho C= x-1
ĐK:x>0,x\(\ne\)9
\(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\div\left[\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\div\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\dfrac{-3\left(\sqrt{x}+3\right).\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)\left(2\sqrt{x}+4\right)}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)