Tìm x , y thỏa mãn điều kiện : \(\frac{1}{x}-\frac{1}{y}=\frac{1}{6}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}\)
tìm x , y thỏa mãn điều kiện trên
Vì x, y có vai trò như nhau nên giả sử \(x\le y\)
\(\Rightarrow\frac{1}{x}\ge\frac{1}{y}\)
\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{x}+\frac{1}{x}=\frac{2}{x}\)
\(\Rightarrow x\le4\)
Nếu \(x=1\Rightarrow\frac{1}{y}=\frac{-1}{2}\Rightarrow y=-2\)(loại)
Nếu \(x=2\Rightarrow\frac{1}{y}=0\)(loại)
Nếu\(x=3\Rightarrow\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)
Nếu x=4\(\Rightarrow\frac{1}{y}=\frac{1}{4}\Rightarrow y=4\)
Vậy...
Bài này chắc tìm nghiệm nguyên dương nên mình làm vậy <(")
a) Tìm hai số dương a, b thỏa mãn:
\(\frac{1}{a}\)- \(\frac{1}{b}=\frac{1}{a-b}\)
b) Tìm các số hữu tỉ x,y,z thỏa mãn điều kiện:
\(x+y=\frac{-7}{6};y+z=\frac{1}{4}\)Và \(x+z=\frac{1}{12}\)
a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)
(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)
(=) \(\left(b-a\right).\left(a-b\right)=ab\)
Vì a,b là 2 số dương
=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\)
Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
b, Cộng vế với vế của 3 đẳng thức ta có :
\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)
(=) \(x+y+z=\frac{-5}{12}\)
Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)
Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)
Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)
Ta có: \(\hept{\begin{cases}x+y=-\frac{7}{6}\\y+z=\frac{1}{4}\\z+x=\frac{1}{12}\end{cases}}\)
\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)
\(2.\left(x+y+z\right)=-\frac{5}{6}\)
\(\Rightarrow x+y+z=-\frac{5}{12}\)
\(\Rightarrow-\frac{7}{6}+z=-\frac{5}{12}\)
\(z=-\frac{5}{12}+\frac{7}{6}\)
\(z=-\frac{5}{12}+\frac{14}{12}\)
\(z=\frac{9}{12}\)
\(z=\frac{3}{4}\)
\(\Rightarrow x+\frac{3}{4}=\frac{1}{12}\)
\(x=\frac{1}{12}-\frac{3}{4}\)
\(x=-\frac{2}{3}\)
\(\Rightarrow-\frac{2}{3}+y=-\frac{7}{6}\)
\(y=-\frac{7}{6}+\frac{2}{3}\)
\(y=-\frac{1}{2}\)
Vậy \(\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{1}{2}\\z=\frac{3}{4}\end{cases}}\)
Tham khảo nhé~
Bài 1 :Cho 2 số dương x,y thỏa mãn điều kiện \(x+y\le1\). Chứng minh\(x^2-\frac{3}{4x}-\frac{x}{y}\le\frac{-9}{4}\)
Bài 2 : Cho 2 số thực x,y thay đổi thỏa mãn điều kiện x+y\(\ge1\)và x>0
Tìm giá trị nhỏ nhất của biểu thức \(M=y^2+\frac{8x^2+y}{4x}\)
bài 3: cho 3 số dương x,y,z thay đổi luôn thỏa mãn điều kiện x+y+z=1. Tìm giá trị lớn nhất của biểu thức:\(P=\dfrac{x}{x+1}+\dfrac{y}{y+1}+\dfrac{z}{z+1}\)
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
Cho \(\frac{16}{\sqrt{x-6}}+\frac{4}{\sqrt{y-1}}+\frac{256}{\sqrt{z-1725}}+\sqrt{x-6+\sqrt{y-1}}\)\(+\sqrt{z-1725}\)
Tìm 3 số x,y,z thỏa mãn điều kiện
Xét các số dương x, y thỏa mãn điều kiện x + y = 1. Tìm GTNN của biểu thức:
\(A=\frac{1}{x^3+y^3}+\frac{1}{xy}\)
Có : A= 1/(x^3+y^3)+1/xy
=> A= 1/(x+y)(x^2+xy+y^2) +1/xy
=> A=1/(x^2+xy+y^2)+1/xy (vì x+y=1)
Áp dụng bđt : 1/a+1/b >= 4/(a+b)
=> 1/(x^2+xy+y^2) +1/xy >= 1/(x+y)^2
=> A >=1
Đẳng thức xảy ra <=> x=y và x+y=1 => x=y=0,5
Vậy Amin=1 <=> x=y=0,5
Cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=1. Tìm GTNN của biểu thức \(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Cho x,y,z lớn hơn 0 thỏa mãn 13x+5y+12z=9. Tìm GTLN của biểu thức \(B=\frac{xy}{2x+y}+\frac{3yz}{2y+z}+\frac{6zx}{2z+x}\)
Giúp mk nhanh nhé mọi người ơi
\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:
\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)
\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)
\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x = y = z = 1/3
Vậy A min = 3/4 khi x=y=z=1/3
Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!
À mà để phải là tìm Max mới đúng chứ nhỉ?
Do đó,bạn sửa dòng: \(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\) đến hết thành:
"\(\le3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)
Dấu "=" xảy ra khi x=y=z=1/3
Vậy A max = 3/4 khi x=y=z=1/3
Tìm các cặp số thực ( x;y ) thỏa mãn các điều kiện : \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\\3xy=x+y+1\end{cases}}\)
M giải luôn nha
\(\frac{1}{2}=\frac{x^2}{\left(y+1^2\right)}+\)\(\frac{y^2}{\left(x+1\right)^2}\) \(\ge\frac{2xy}{\left(x+1\right)\left(y+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\ge4xy\)
\(\Leftrightarrow3xy\le x+y+1\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}=\frac{y^2}{\left(x+1\right)^2}\\3xy=x+y+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\3x^2-2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=1\left(tm\right)\\x=y=-\frac{1}{3}\left(tm\right)\end{cases}}\)
Vậy ( x ; y ) ......
Tìm các cặp số thực (x;y) thỏa mãn cái điều kiện:
\(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}=\frac{1}{2}\\3xy=x+y+1\end{cases}}\)
Ta có: 3xy=x+y+1
\(\Leftrightarrow4xy=xy+x+y+1\)
\(\Leftrightarrow4xy=\left(x+1\right)\left(y+1\right)\)
Lai có:\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=0\)
\(\Leftrightarrow\left(\frac{x}{y+1}-\frac{y}{x+1}\right)^2=0\)
giải tiếp hộ t với. sao t tìm ra 4 nghiệm nhưng thử lại chỉ 2 cái đc
Cho x,y,z là các số thực dương thỏa mãn điều kiện: x+y+z=0 , x+1>0 , y+1>0 , z+1>0
Tìm GTLN của \(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+4}\)
Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0
a + b + c = 6
\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)
\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)
Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)
PaiN: Nhưng x,y,z là các số thực dương thì sao z âm đc?