Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
The Lonely Cancer
Xem chi tiết
Trần Nguyễn Quy
11 tháng 1 2017 lúc 9:28

Vì x, y có vai trò như nhau nên giả sử \(x\le y\)

\(\Rightarrow\frac{1}{x}\ge\frac{1}{y}\)

\(\Rightarrow\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\le\frac{1}{x}+\frac{1}{x}=\frac{2}{x}\)

\(\Rightarrow x\le4\)

 Nếu \(x=1\Rightarrow\frac{1}{y}=\frac{-1}{2}\Rightarrow y=-2\)(loại)

Nếu \(x=2\Rightarrow\frac{1}{y}=0\)(loại)

Nếu\(x=3\Rightarrow\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)

Nếu x=4\(\Rightarrow\frac{1}{y}=\frac{1}{4}\Rightarrow y=4\)

Vậy... 
Bài này chắc tìm nghiệm nguyên dương nên mình làm vậy <(") 

Akane Miyamoto
11 tháng 1 2017 lúc 7:05

x=4

y=4

natsu dragneel
11 tháng 1 2017 lúc 7:24

x = 4

y = 4

Lân Dũng
Xem chi tiết
My Love bost toán
14 tháng 11 2018 lúc 19:38

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

My Love bost toán
14 tháng 11 2018 lúc 19:47

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

kudo shinichi
14 tháng 11 2018 lúc 19:51

Ta có: \(\hept{\begin{cases}x+y=-\frac{7}{6}\\y+z=\frac{1}{4}\\z+x=\frac{1}{12}\end{cases}}\)

\(\Rightarrow\left(x+y\right)+\left(y+z\right)+\left(z+x\right)=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

\(2.\left(x+y+z\right)=-\frac{5}{6}\)

\(\Rightarrow x+y+z=-\frac{5}{12}\)

\(\Rightarrow-\frac{7}{6}+z=-\frac{5}{12}\)

\(z=-\frac{5}{12}+\frac{7}{6}\)

\(z=-\frac{5}{12}+\frac{14}{12}\)

\(z=\frac{9}{12}\)

\(z=\frac{3}{4}\)

\(\Rightarrow x+\frac{3}{4}=\frac{1}{12}\)

\(x=\frac{1}{12}-\frac{3}{4}\)

\(x=-\frac{2}{3}\)

\(\Rightarrow-\frac{2}{3}+y=-\frac{7}{6}\)

\(y=-\frac{7}{6}+\frac{2}{3}\)

\(y=-\frac{1}{2}\)

Vậy \(\hept{\begin{cases}x=-\frac{2}{3}\\y=-\frac{1}{2}\\z=\frac{3}{4}\end{cases}}\)

Tham khảo nhé~

Mai Tiến Đỗ
Xem chi tiết
Trần Minh Hoàng
2 tháng 1 2021 lúc 19:39

3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).

Quản gia Whisper
Xem chi tiết
Phạm Thanh Trà
Xem chi tiết
Tiến Dũng
22 tháng 3 2017 lúc 12:00

Có : A= 1/(x^3+y^3)+1/xy
=> A= 1/(x+y)(x^2+xy+y^2) +1/xy
=> A=1/(x^2+xy+y^2)+1/xy (vì x+y=1)
Áp dụng bđt : 1/a+1/b >= 4/(a+b)
=> 1/(x^2+xy+y^2) +1/xy >= 1/(x+y)^2
=> A >=1
Đẳng thức xảy ra <=> x=y và x+y=1 => x=y=0,5
Vậy Amin=1 <=> x=y=0,5

Tiến Dũng
22 tháng 3 2017 lúc 12:01

Nhầm Amin =4 :v

Thu Nguyễn
Xem chi tiết
tth_new
12 tháng 12 2018 lúc 18:01

\(A=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\).Áp dụng BĐT Cauchy-Schwarz,ta có:

\(=\left(1-\frac{1}{x+1}\right)+\left(1-\frac{1}{y+1}\right)+\left(1-\frac{1}{z+1}\right)\)

\(=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x = y = z = 1/3

Vậy A min = 3/4 khi x=y=z=1/3

tth_new
12 tháng 12 2018 lúc 18:01

Bỏ chữ "Áp dụng bđt Cauchy-Schwarz,ta có:"giùm mình,nãy đánh nhầm ở bài làm trước mà quên xóa đi!

tth_new
12 tháng 12 2018 lúc 18:04

À mà để phải là tìm Max mới đúng chứ nhỉ?

Do đó,bạn sửa dòng: \(\ge3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\) đến hết thành:

"\(\le3-\frac{9}{\left(x+y+z\right)+\left(1+1+1\right)}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1/3

Vậy A max = 3/4 khi x=y=z=1/3

ミ★Zero ❄ ( Hoàng Nhật )
Xem chi tiết
20	Nguyễn Hồng Trà My
26 tháng 5 2021 lúc 16:44

47659:9

Khách vãng lai đã xóa
Nguyễn Hà Chi
26 tháng 5 2021 lúc 17:01

M giải luôn nha

\(\frac{1}{2}=\frac{x^2}{\left(y+1^2\right)}+\)\(\frac{y^2}{\left(x+1\right)^2}\) \(\ge\frac{2xy}{\left(x+1\right)\left(y+1\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\ge4xy\)

\(\Leftrightarrow3xy\le x+y+1\)

Dấu " = " xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}=\frac{y^2}{\left(x+1\right)^2}\\3xy=x+y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y\\3x^2-2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=1\left(tm\right)\\x=y=-\frac{1}{3}\left(tm\right)\end{cases}}\)

Vậy ( x ; y ) ......

Khách vãng lai đã xóa
Trang-g Seola-a
Xem chi tiết
Phạm Quốc Cường
3 tháng 10 2018 lúc 20:29

Ta có: 3xy=x+y+1

\(\Leftrightarrow4xy=xy+x+y+1\)

\(\Leftrightarrow4xy=\left(x+1\right)\left(y+1\right)\) 

Lai có:\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=0\)

\(\Leftrightarrow\left(\frac{x}{y+1}-\frac{y}{x+1}\right)^2=0\)

Trang-g Seola-a
5 tháng 10 2018 lúc 19:09

giải tiếp hộ t với. sao t tìm ra 4 nghiệm nhưng thử lại chỉ 2 cái đc

Masked Man
Xem chi tiết
Masked Man
3 tháng 10 2018 lúc 21:11

sửa đề: z+4>0

Pain zEd kAmi
3 tháng 10 2018 lúc 21:35

Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0

a + b + c = 6

\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)

Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)

\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)

Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)

tth_new
25 tháng 11 2018 lúc 10:25

PaiN: Nhưng x,y,z là các số thực dương thì sao z âm đc?