(1.25-3/7.x)(-5/4x+14/9)=0
tìm x biết
a:3/5-2/7<2/3x+3/4<1/2+7/9
b:1/6+1/9<2/3-3/4X<2/3+1.25
. Tìm cặp phương trình tương đương a) 4x – 7 = 12x + 5 và 2x – 1 = 6x + 5 b) 7(x 10) = 12 và 14(x 10) = 24. c) 4 4 3 x x 3 x 3 và 3x 9 0
Đề hơi khó hiểu nhưng vẫn biết cách làm !!!
Bài giải
a) +)Ta có : 4x - 7 = 12x +5
=> 4x - 12x = 5 + 7
<=> -8x = 12
<=> x =\(\frac{-12}{8}=\frac{-3}{2}\)
+)Ta có : 2x -1 = 6x + 5
<=> 2x - 6x = 5 + 1
<=> -4x = 6
<=> x = \(\frac{-6}{4}=\frac{-3}{2}\)
=> đây là cặp phương trình tương đương .
b) +) 7.( x - 10 ) =12
+) 14 . ( x - 10 ) = 24
<=> \(\frac{1}{2}.\left[14.\left(x-10\right)\right]=\frac{1}{2}.24\)
<=>7 . ( x - 10 ) = 12
=> Đây là 2 phương trình tương đương .
c) +) \(\frac{4}{x+3}-3=\frac{4}{x+3}+x.\left(ĐK:x\ne-3\right)\)
<=> \(\left(\frac{4}{x+3}-\frac{4}{x+3}\right)-3=x\)
<=> 0 - 3 = x
<=>x = 3
+) Với x= -3 => x + 3 = 0
=> ko thỏa mãn
=> ko xét tính tương đương
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2
Tìm x:
a) 3/4x + 2/5x=1
b) ( x-9/11)( x-25/31)=0
c) x-3/7:9/14=7/3
Ai giúp đc k ah?!
a,x.(3\4+2\5)=1
x.20\23=1
x=1:20\23
x=20\23
b,x-9\11=0 hoặc x-25\31=0
x=9\11 x=25\31
c,x-3\7.9\14=7\3
x-2\3=7\3
x=7\3+2\3
x=9\3
x=3
Tìm x, biết:
a) x. (2x - 7) - 4x + 14 = 0
b) x2. (x - 1) - 4x + 4 = 0
c) x + x2 - x3 - x4 = 0
d) 2x3 + 3x2 + 2x + 3 = 0
e) 4x2 - 25 - (2x - 5). (2x + 7) = 0
g) x3 + 27 + (x + 3). (x - 9) = 0
\(x\left(2x-7\right)-4x+14=0\Leftrightarrow\left(x-2\right)\left(2x-7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{2}\end{matrix}\right.\)
\(x^2\left(x-1\right)-4\left(x-1\right)=\left(x^2-4\right)\left(x-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\end{matrix}\right.\)
\(x^4-x^3-x^2+x=x\left(x^3+1\right)-x^2\left(x+1\right)=x\left(x+1\right)\left(x^2-x+1-x^2\right)=x\left(x+1\right)\left(1-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\\1-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm1\end{matrix}\right.\)
a) \(x\left(2x-7\right)-4x+14-0\Leftrightarrow2x^2-11x+14=0\Leftrightarrow2x^2-4x-7x+14=0\Leftrightarrow2x\left(x-2\right)-7\left(x-2\right)=0\Leftrightarrow\left(2x-7\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3,5\\x=2\end{matrix}\right.\)
b) \(x^2\left(x-1\right)-4x+4=0\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-2\end{matrix}\right.\)
c) \(x+x^2-x^3-x^4=0\Leftrightarrow x\left(x^3+x^2-x-1\right)=0\Leftrightarrow x\left[x\left(x^2-1\right)+\left(x^2-1\right)\right]=0\Leftrightarrow x\left(x+1\right)\left(x^2-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
d) \(2x^3+3x^2+2x+3=0\Leftrightarrow x^2\left(2x+3\right)+2x+3=0\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\Leftrightarrow x=-1,5\left(x^2+1>0\forall x\right)\)
e) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\Leftrightarrow2x-5=0\Leftrightarrow x=2,5\)
g) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\Leftrightarrow x\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
a) x. (2x - 7) - 4x + 14 = 0
⇔ 2x\(^2\) - 7x - 4x + 14 =0
⇔ 2x( x - 2 ) - 7 ( x - 2 ) = 0
⇔ ( 2x - 7 ) ( x - 2 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{2}\\x=2\end{matrix}\right.\)
b) x2. (x - 1) - 4x + 4 = 0
⇔ x2. (x - 1) - 4( x - 1 ) = 0
⇔(x\(^2\) - 4 ) ( x - 1 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x^2-4=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm2\\x=1\end{matrix}\right.\)
⇔ 2x( x\(^2\) + 1 ) +3( x\(^2\) + 1 ) = 0
⇔ ( 2x + 3 ) ( x\(^2\) + 1 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{2}\\x=\pm1\end{matrix}\right.\)
e) 4x2 - 25 - (2x - 5). (2x + 7) = 0
⇔ ( 2x - 5 ) ( 2x + 5 ) - ( 2x - 5 ) (2x + 7 ) = 0
⇔ ( 2x - 5 ) ( 2x + 5 - 2x - 7 ) = 0
⇔-2(2x - 5 ) =0
\(\Leftrightarrow\left[{}\begin{matrix}-2=0\left(vl\right)\\2x-5=0\end{matrix}\right.\)
⇔ x= \(\frac{5}{2}\)
g) x3 + 27 + (x + 3). (x - 9) = 0
⇔ ( x+ 3 ) ( x\(^2\) - 3x + 9) + ( x+ 3 ) ( x - 9 ) = 0
⇔ ( x + 3 ) ( x\(^2\) - 3x + 9 + x - 9 ) = 0
⇔ ( x + 3 ) ( x\(^2\) - 2x ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=0\end{matrix}\right.\)
Tìm x , biết :
a. x (2x - 7) - 4x + 14 = 0
b. 5x3 + x2 - 4x - 9 = 0
c. 3x3 - 7x2 + 6x - 14 = 0
d. 5x2 - 5x = 3 (x - 1)
e. 4x2 - 25 - (4x - 10) = 0
f. x3 + 27 + (x + 3) (x - 9) = 0
Bài làm :
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) Sửa đề : 5x3 + x2 - 4x + 9 = 0
<=>( 5x3 + 5 ) + (x2 - 4x +4)=0
<=> 5(x3 + 1) + (x-2)2 = 0
<=> 5(x+1)(x2 - x +1) + (x+2)2 =0
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}\\\end{cases}}\begin{cases}x=0\\x=-3\\x=2\end{cases}\)
Tìm x , biết :
a. x (2x - 7) - 4x + 14 = 0
b. 5x3 + x2 - 4x - 9 = 0
c. 3x3 - 7x2 + 6x - 14 = 0
d. 5x2 - 5x = 3 (x - 1)
e. 4x2 - 25 - (4x - 10) = 0
f. x3 + 27 + (x + 3) (x - 9) = 0
a) x( 2x - 7 ) - 4x + 14 = 0
<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0
<=> ( 2x - 7 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)
b) 5x3 + x2 - 4x - 9 = 0 ( đề sai )
c) 3x3 - 7x2 + 6x - 14 = 0
<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0
<=> ( x - 7/3 )( 3x2 + 6 ) = 0
<=> \(\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)( do 3x2 + 6 ≥ 6 > 0 với mọi x )
d) 5x2 - 5x = 3( x - 1 )
<=> 5x( x - 1 ) - 3( x - 1 ) = 0
<=> ( x - 1 )( 5x - 3 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)
e) 4x2 - 25 - ( 4x - 10 ) = 0
<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0
<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)
f) x3 + 27 + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0
<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0
<=> ( x + 3 )( x2 - 2x ) = 0
<=> x( x + 3 )( x - 2 ) = 0
<=> x = 0 hoặc x + 3 = 0 hoặc x - 2 = 0
<=> x = 0 hoặc x = -3 hoặc x = 2
Tìm x, biết
a) x(2x-7)-4x+14=0
b) (2x+5)(3x-1)-(2x+5)=0
c) \(\left(2x-3\right)^2-6x+9=0\)
a )
\(x\left(2x-7\right)-4x+14=0\)
\(\Rightarrow x\left(2x-7\right)-2\left(2x-7\right)=0\)
\(\Rightarrow\left(x-2\right)\left(2x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\2x=7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy ...
b )
\(\left(2x+5\right)\left(3x-1\right)-\left(2x+5\right)=0\)
\(\Rightarrow\left(2x+5\right)\left(3x-1-1\right)=0\)
\(\Rightarrow\left(2x+5\right)\left(3x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+5=0\\3x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-5\\3x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...
c )
\(\left(2x-3\right)^2-6x+9=0\)
\(\Rightarrow\left(2x-3\right)^2-3\left(2x-3\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(2x-3-3\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x-6=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
Vậy ...
\(a.x\left(2x-7\right)-4x+14=0\Rightarrow x\left(2x-7\right)-2\left(2x-7\right)=0\Rightarrow\left(x-2\right)\left(2x-7\right)=0\Rightarrow\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\Rightarrow}\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)Vậy \(x\in\left\{2;\dfrac{7}{2}\right\}\).
1) 5x^2 = 13x
2) (5x^2 + 3x – 2 )^2 = (4x^2 – 3x – 2 )^2
3) x^3 + 27 + (x + 3)(x – 9) = 0
4) 5x(x – 2000) – x + 2000 = 0
5) 5x(x – 2) – x – 2 = 0
6) 4x(x + 1) = 8( x + 1)
7) x(x – 4) + (x – 4)^2 = 0
8) x^2 – 6x + 8 = 0
9) 9x^2 + 6x – 8 = 0
10) x^3 + x^2 + x + 1 = 0
11) x^3 - x^2 - x + 1 = 0
12) (5 – 2x)(2x + 7) = 4x^2 – 25
13) x(2x - 1) + 1/3 . 2/3x = 0
14) 4(2x + 7) – 9(x + 3)^2 = 0
GIÚP TUI ZỚI MỌI NGƯỜI OIWIII!!!
1,\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{13}{5}\end{cases}}\)
2,\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\Leftrightarrow\orbr{\begin{cases}5x^2+3x-2=4x^2-3x-2\\5x^2+3x-2=-4x+3x+2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\9x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(3x\right)^2=2^2\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=0or-6\\x=-\frac{2}{3}or\frac{2}{3}\end{cases}}\)
3,\(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+4x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x\left(x+4\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=0or-4\end{cases}}\)
4,\(5x\left(x-2000\right)-x+2000=0\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}\)
5,\(5x\left(x-2\right)-x+2=0\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\5x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)
6,\(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
7,\(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(2x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\2x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
tí làm nửa kia
8,\(x^2-6x+8=0\Leftrightarrow x^2-6x+9-1=0\Leftrightarrow\left(x-3\right)^2-1^2=0\)
\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
9,\(9x^2+6x-8=0\Leftrightarrow9x^2+6x+1-9=0\Leftrightarrow\left(3x+1\right)^2-3^2=0\)
\(\Leftrightarrow\left(3x+1-3\right)\left(3x+1+3\right)=0\Leftrightarrow\left(3x-2\right)\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\3x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{4}{3}\end{cases}}\)
10,\(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}x=-1\)
11,\(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
12,\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-4x^2+25=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7-5-2x\right)=0\Leftrightarrow\left(5-2x\right).2=0\Leftrightarrow5-2x=0\Leftrightarrow x=\frac{5}{2}\)
13,\(x\left(2x-1\right)+\frac{1}{3}.\frac{2}{3}x=0\Leftrightarrow x\left(2x-1\right)+\frac{2}{9}x=0\)
\(\Leftrightarrow x\left(2x-1+\frac{2}{9}\right)=0\Leftrightarrow x\left(2x-\frac{7}{9}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{7}{9}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{18}\end{cases}}\)
14,\(4\left(2x+7\right)-9\left(x+3\right)^2=0\Leftrightarrow8x+28-9x^2-54x-81=0\)
\(\Leftrightarrow-9x^2+\left(8x-54x\right)+\left(28-81\right)=0\Leftrightarrow-9x^2-46x-53=0\)
\(\Leftrightarrow9x^2+46x+53=0\)Ta có : \(\Delta'=\frac{2116}{4}-477=529-477=52\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-23+\sqrt{52}}{9}\\x=\frac{-23-\sqrt{52}}{9}\end{cases}}\)
Tìm x
1. (3x+5)(4-3x)=0
2. 9(3x-2)=x(2-3x)
3. 25x^2 -2=0
4. x^2- 25=6x-9
5. (2x-1)^2-(2x+5)(2x-5)=18
6. x^3-8=(x-2)^3
7. x^3-4x^2+4x=0
8. x^2- 25+2(x+5)=0
9. 2(x^2+8x+16)- x^2+4=0
10. x^2(x-2)+7x=14
(3x+5)(4-3x)=0
3x+5 =0 hoặc 4-3x=0
3x=-5 hoặc 3x=-4
x=-5/3 hoặc x=-4/3
9(3x-2)=x(2-3x)
9(3x-2)-x(3x-2)=0
(3x-2)(9-x)=0
3x-2=0 hoặc 9-x=0
3x=2 hoặc x= -9
x =2/3 hoặc x=-9
vậy x =2/3 ; x= -9
25x^2 - 2=0
(5x)^2 -√2^2=0
(5x-√2)(5x+√2)=0
5x=√2 hoặc 5x = -√2
x=√2/5 hoặc x= -√2/5
vậy x=√2/5 ; x=-√2/5