tim x thuoc z\(^{\left(x+8\right):\left(x+7\right)}\)
CHO E=\(\left(\frac{x^3}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{2+x}\right):\left(x+2+\frac{10-x^2}{x-2}\right)\)
a) Rut gon E
b) Tim x thuoc Z sao cho E thuoc Z
tim x y z
\(x\left(x+y+z\right)=13;y\left(x+y+z\right)=7;z\left(x+y+z\right)=-4\)
giup minh nhe minh dang can gap
\(\left\{{}\begin{matrix}x\left(x+y+z\right)=13\\y\left(x+y+z\right)=7\\z\left(x+y+z\right)=-4\end{matrix}\right.\) \(\Leftrightarrow x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=13+7-4\)
\(\Rightarrow\left(x+y+z\right)\left(x+y+z\right)=16\)
\(\Rightarrow\left(x+y+z\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=4\\x+y+z=-4\end{matrix}\right.\)
Với \(x+y+z=4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{4}\\y=\dfrac{7}{4}\\z=-1\end{matrix}\right.\)
Với \(x+y+z=-4\)
\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{13}{4}\\y=-\dfrac{7}{4}\\z=1\end{matrix}\right.\)
\(\left|x\right|-5\frac{3}{7}\left|x\right|-\frac{3}{4}=2\left|x\right|+\left(-\frac{8}{7}\right)\)
Tim x
khi x>0, ta có
x - 38/7*x - 3/4 = 2*x + (-8/7)
-45/7*x=-11/28
x=-11/180( ko thoả )
khi x<0 có
-x -38/7x - 3/4 = -2x -8/7
bạn tự giải nhé rồi ktra dđiều kiện nhé !
tim x, y,z
\(x\left(x+y+z\right)=13\) \(y\left(x+y+z\right)=7\) \(z\left(x+y+z\right)=-4\)
Phân tích đa thức thành nhân tử:
1) \(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4\)
2) \(\left(x+y\right)^4+x^4+y^4\)
3) \(\left(x+y\right)^7+\left(y-2\right)^7+\left(z-x\right)^7\)
4) \(\left(x-y\right)^5+\left(y-z\right)^5+\left(z-x\right)^5\)
5) \(\left(x-y\right)^7+\left(y-z\right)^7+\left(z-x\right)^7\)
6) \(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
7) \(x^3+y^4-6xy+8\)
8) \(x^3+y^3+3x^2+3y^2++6x+6y+8\)
9) \(a^3+ac^2-abc+b^2c+b^3\)
tìm x biết x ko thuoc {1;3;8;20} va
\(\frac{2}{\left(x-1\right).\left(x-3\right)}+\frac{3}{\left(x-3\right).\left(x-8\right)}+\frac{12}{\left(x-8\right).\left(x-20\right)}-\frac{1}{x-20}=\frac{-3}{4}\)
Phân tích các đa thức sau thành nhân tử:
a) \(\left(x+y\right)^7-x^7-y^7\)
b) \(\left(x-y\right)^7+\left(y-z\right)^7+\left(z-x\right)^7\)
c) \(x^3+y^3-6xy+8\)
d) \(x^3+y^3+3x^2+3y^2+6a+6y+8\)
e) \(a^3+ac^2-abc+b^2c+b^3\)
g) \(8\left(x+y+z\right)^3-\left(x+y\right)^3-\left(y+z\right)^3-\left(z+x\right)^3\)
help me
Toshiro Kiyoshi30GP
Nguyễn Đình Dũng19GP
Nguyễn Huy Thắng17GP
Nguyễn Thanh Hằng16GP
Nguyễn Thị Hồng Nhung15GP
Rồng Đỏ Bảo Lửa11GP
Mysterious Person10GP
Đời về cơ bản là buồn... cười!!!8GP
Huy Thắng Nguyễn8GP
Ánh Dương Hoàng Vũ6GP
cho x,y,z>0 thỏa mãn \(\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)=8\)
Tìm giá trị nhỏ nhất của S=\(xyz\left(x+y+z\right)^3\)
(có thể dùng BDT \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\))
tks mn<3
Tim x \(\in z\);
\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)<0\)
Ta có: \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)<0\)
=>\(\left[\left(x^2-1\right)\left(x^2-7\right)\right].\left[\left(x^2-4\right)\left(x^2-10\right)\right]<0\)
=>\(\left[\left(x^2-4+3\right)\left(x^2-4-3\right)\right].\left[\left(x^2-7+3\right)\left(x^2-7-3\right)\right]<0\)
=>\(\left[\left(x^2-4\right)^2-3^2\right].\left[\left(x^2-7\right)^2-3^2\right]<0\)
=>\(\left[\left(x^2-4\right)^2-9\right].\left[\left(x^2-7\right)^2-9\right]<0\)
=>(x2-4)-9 và (x2-7)-9 khác dấu
Vì \(\left(x^2-4\right)^2-9>\left(x^2-7\right)^2-9\)
=>\(\left(x^2-4\right)^2-9>0=>\left(x^2-4\right)^2>9=>x^2-4>3=>x^2>7=>x>2\)
Và \(\left(x^2-7\right)^2-9<0=>\left(x^2-7\right)^2<9=>x^2-7<3=>x^2<10=>x<4\)
=>2<x<4
mà \(x\in Z\)
=>x=3
Vậy x=3