\(\frac{n(n - 1)}{2}\)
(\(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+....+\frac{2}{n-2}+\frac{1}{n-1}\)):\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{n}\)
Tại sao làm như vậy là sai nhỉ : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{\frac{1}{n}+\frac{2}{n}+...+\frac{1}{n^2}}{1+\frac{1}{n^2}}=\frac{0}{1}=0\)
phải làm theo vầy mới đúng : \(\lim\limits_{ }\frac{1+2+...+n}{n^2+1}=\lim\limits_{ }\frac{n\left(n+1\right)}{2\left(n^2+1\right)}=\lim\limits_{ }\frac{1+\frac{1}{n}}{2+\frac{1}{n}}=\frac{1}{2}\)
Mình mới học nên ko hiểu lắm, có ai giúp vớiiiiiiiiiii
\(TínhM=\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{3}{n-3}+\frac{2}{n-2}+\frac{1}{n-1}\)
Viết chương trình cho phép nhập số tự nhiên N từ bàn phím (với 0<n<=12) rồi thực hiện:
a: Tìm N! = 1.2.3...N
b: tìm S = \(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{N!}\)
c: T = \(1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{1}{n^2}\)
d: S = \(1+\frac{1}{2^2}+\frac{1}{3^3}+\frac{1}{4^4}+...+\frac{1}{n^n}\)
e: \(S_n=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}+...+\frac{n}{n+1}\)
f: S = \(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+...+\frac{x^n}{n!}\)
b)
program hotrotinhoc;
var s: real;
i,n: byte;
function t(x: byte): longint;
var j: byte;
t1: longint;
begin
t1:=1;
for j:=1 to x do
t1:=t1*j;
t1:=t;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/t(i);
write(s:1:2);
readln
end.
c) Đề em ghi sai rồi thế này với đúng :
\(T=1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{n}{n^2}\)
program hotrotinhoc;
var t: real;
n,i: byte;
begin
readln(n);
t:=0;
for i:=1 to n do
t:=t+i/(i*i);
write(t:1:2);
readln
end.
a)
uses crt;
var N,S,i : integer;
begin clrscr;
S:=1;
for i:= 1 to N do S:=S*i;
writeln('N!=',S);
readln
end.
Các cái kia tương tự :))
d)
program hotrotinhoc;
var i,n: byte;
s: real;
function mu(x: byte): longint;
var j : byte;
k: longint;
begin
k:=1;
for j:=1 to x do
k:=k*x;
k:=mu;
end;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+1/mu(i);
write(s:1:2);
readln
end.
e)
program hotrotinhoc;
var s: real;
i,n: byte;
begin
readln(n);
s:=0;
for i:=1 to n do
s:=s+i/(i+1);
write(s:1:2);
readln
end.
Rút gọn biểu thức:
\(B=\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\) + \(\frac{1}{n}\) )
sxdhjkhafn gwudahsjc nbsdluihjckmdln933sdvfdzfs
THU GỌN BIỂU THỨC SAU
\(\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\)
CMR:
a, \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>\frac{n}{n+1}\)
b, \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n-1}\)
c, \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.
THU GỌN BIỂU THỨC SAU
\(\left(\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{2}{n-2}+\frac{1}{n-1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\right)\)
1, CMR: \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\ge\frac{n}{n+1}\)
2, CMR: \(2\left(\sqrt{n-1}-1\right)< 1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}\)
3, CMR: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
cho \(A=\frac{n-1}{1}+\frac{n-2}{2}+...+\frac{2}{n-2}+\frac{1}{n-1}\) , \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{n}\) . Tính \(\frac{A}{B}\)
Lời giải:
\(A=\frac{n-1}{1}+\frac{n-2}{2}+\frac{n-3}{3}+...+\frac{n-(n-2)}{n-2}+\frac{n-(n-1)}{n-1}\)
\(=\left(\frac{n}{1}+\frac{n}{2}+\frac{n}{3}+....+\frac{n}{n-1}\right)-(\frac{1}{1}+\frac{2}{2}+...+\frac{n-1}{n-1})\)
\(=n-1+n(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})-(n-1)=n(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n})\)
\(=nB\)
Do đó: $\frac{A}{B}=n$