-1^2+2^2-3^2+4^2-...-99^2+100^2 (sử dụng hằng đẳng thức lớp 8)
tính nhanh : -12 + 22 - 32 + 42 - 52 + ..... + 982 - 992 + 1002
toán lớp 8 nha , đang học đến hằng đẳng thức số 3 thôi
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+...+\left(100^2-99^2\right)\)
\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+...+\left(100+99\right)\left(100-99\right)\)
\(=1+2+3+4+...+100=\frac{\left(100+1\right).100}{2}=5050\)
Bài làm :
Ta có :
\(-1^2+2^2-3^2+4^2-5^2+....+100^2\)
\(=\left(2^2-1^2\right)+\left(4^2-3^2\right)+....+\left(100^2-99^2\right)\)
\(=\left(2+1\right)\left(2-1\right)+\left(4+3\right)\left(4-3\right)+....+\left(100+99\right)\left(100-99\right)\)
\(=1+2+3+4+....+100=\frac{\left(100+1\right).100}{2}=5050\)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Sử dụng hằng đẳng thức để thực hiện phép chia:
a) (2 x 4 - 8 x 2 + 8): (4 - 2 x 2 );
b) (125 - 8 x 3 ):(4x - 10);
c) (1 + 3 x 3 + 3 x 6 + x 9 ):(-1 - x 3 ).
a) Kết quả - x 2 + 2. b) Kết quả − 1 2 ( 4 x 2 + 10 x + 25 ) .
c) Kết quả - ( x 3 + 1 ) 2 .
Sử dụng hằng đẳng thức rồi thực hiện phép chia : (2x4-8x2+8) : (4-2x2)
(2x4-8x2+8) : (4-2x2)
= 2(x4-4x2+4) : 2(2-x2)
= (x4-4x2+4) : (2-x2)
= (x2 - 2) : (2-x2)
= - 1
\(2x^4+8x^2+8=2\left(x^4+4x^2+4\right)=2\left(x^2+2\right)^2\)
\(\left(4-2x^2\right)=2\left(2-x^2\right)\Rightarrow\frac{2x^4+8x^2+8}{4-2x^2}=\frac{2\left(x^2+2\right)^2}{2\left(2-x^2\right)}=\frac{\left(x^2+2\right)^2}{2-x^2}\)
Nếu không sai đề thì tự phân tích rồi thực hiện phép chia đa thức
tối giản biểu thức sau:
a)f(x,y)=\(( \dfrac 1 3 .x+2y)( \dfrac 1 9 x^2 - \dfrac 2 3 xy + 4y^2)\)
b)f(x)=\((x^2-\dfrac 13)(x^4+\dfrac 13x^2+\dfrac 19)\)
( sử dụng các hằng đẳng thức đáng nhớ)
\(\left(\dfrac{1}{3}.x+2y\right)\left(\dfrac{1}{9}x^2-\dfrac{2}{3}xy+4y^2\right)=\left(\dfrac{1}{3}.x\right)^3+\left(2y\right)^3=\dfrac{1}{27}x^3+8y^3\)
b: \(f\left(x\right)=\left(x^2\right)^3-\left(\dfrac{1}{3}\right)^3=x^6-\dfrac{1}{27}\)
Rút gọn biểu thực rồi tính : sử dụng các hằng đẳng thức
b) M = (x + 3) ^ 2 + (x - 3)(x - 3) - 2(x + 2)(x - 4) khi 2 thỏa mãn với 2x + 1 = 0
2) V = (3x + 4) ^ 2 - (x + 4)(x - 4) - 10x. khi 2 thỏa mãn với 10x + 1 = 0 .
3) P = (x + 1) ^ 2 - (2x - 1) ^ 2 + 3(x - 2)(x + 2) với x = 1
4) Q = (x - 3)(x + 3) + (x - 2) ^ 2 - 2x(x - 4) với x = - 1 .
Lời giải:
1.
$M=(x^2+6x+9)+(x^2-9)-2(x^2-2x-8)$
$=x^2+6x+9+x^2-9-2x^2+4x+16=(x^2+x^2-2x^2)+(6x+4x)+(9-9+16)$
$=10x+16=5(2x+1)+11=5.0+11=11$
2.
$V=(9x^2+24x+16)-(x^2-16)-10x=9x^2+24x+16-x^2+16-10x$
$=(9x^2-x^2)+(24x-10x)+(16+16)=8x^2+14x+32$
$=8(\frac{-1}{10})^2+14.\frac{-1}{10}+32=\frac{767}{25}$
3.
$P=(x^2+2x+1)-(4x^2-4x+1)+3(x^2-4)$
$=x^2+2x+1-4x^2+4x-1+3x^2-12$
$=(x^2-4x^2+3x^2)+(2x+4x)+(1-1-12)$
$=6x-12=6.1-12=-6$
4.
$Q=(x^2-9)+(x^2-4x+4)-2x^2+8x$
$=x^2-9+x^2-4x+4-2x^2+8x$
$=(x^2+x^2-2x^2)+(-4x+8x)-9+4$
$=4x-5=4(-1)-5=-9$
Sử dụng hằng đẳng thức để thực hiện phép chia:
a) ( x 2 - 2x + l) :(x - 1);
b) (8 x 3 +27): (2x + 3);
c) ( x 6 - 6 x 4 + 12 x 2 - 8): (2 - x 2 ).
a) Biến đổi x 2 – 2x + 1 = ( x – 1 ) 2 ; thực hiện chia được kết quả x – 1.
b) Biến đổi 8 x 3 + 27 = (2x + 3)(4 x 2 – 6x + 9); thực hiện phép chia được kết quả 4 x 2 – 6x + 9.
c) Phân thích x 6 – 6 x 4 + 12 x 2 – 8 = ( x 2 – 2)( x 4 – 4 x 2 + 4); thực hiện phép chia được kết quả - x 4 + 4 x 2 – 4.
Tìm x (sử dụng hằng đẳng thức) :
(x - 3)3 + 3(x + 1)2 = (x2 - 2x + 4)(x + 2)
Ta có : \(\left(x-3\right)^3+3.\left(x+1\right)^2=\left(x^2-2x+4\right)\left(x+2\right)\)
\(\Leftrightarrow x^3-9x^2+27x-27+3.\left(x^2+2x+1\right)=x^3+8\)
\(\Leftrightarrow x^3-6x^2+33x-24=x^3+8\)
\(\Leftrightarrow-6x^2+33x-32=0\)
\(\Leftrightarrow6x^2-33x+32=0\)
\(\Leftrightarrow x=\frac{33\pm\sqrt{321}}{12}\)
Khai triển HĐT, đơn giản nhất
PT <=> \(x^3-6x^2+33x-24=x^3+8\)
\(-6x^2+33x-32=0\) ( vô nghiệm )
( x - 3 )3 + 3( x + 1 )2 = ( x2 - 2x + 4 )( x + 2 )
<=> x3 - 9x2 + 27x - 27 + 3( x2 + 2x + 1 ) = x3 + 23
<=> x3 - 9x2 + 27x - 27 + 3x2 + 6x + 3 = x3 + 8
<=> x3 - 9x2 + 27x + 3x2 + 6x - x3 = 8 + 27 - 3
<=> -6x2 + 33x = 32
<=> -6x2 + 33x - 32 = 0 (*)
\(\Delta=b^2-4ac=33^2-4\cdot\left(-6\right)\cdot\left(-32\right)=1089-768=321\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-33+\sqrt{321}}{-12}=\frac{33-\sqrt{321}}{12}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-33-\sqrt{321}}{-12}=\frac{33+\sqrt{321}}{12}\end{cases}}\)
Vậy ...
Lớp 8 mà sao nghiệm xấu thế :v
Sử dụng hằng đẳng thức để tìm x:
(x+1)^3 - (x-1)^3 - 6(x-2)(x+1) +3x -2=0
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-2\right)\left(x+1\right)+3x-2=0\)
\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+6x+12+3x-2=0\)
\(1+1+6x+3x+12-2=0\)
\(9x+12=0\)
\(9x=-12\)
\(x=\frac{-4}{3}\)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-2\right)\left(x+1\right)+3x-2=0\)
\(\Leftrightarrow\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-2\right)\left(x+1\right)+3x=0+2\)
\(\Leftrightarrow\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-2\right)\left(x+1\right)+3x=2\)
\(\Leftrightarrow9x+14=2\)
\(\Leftrightarrow9x=2-14\)
\(\Leftrightarrow9x=-12\)
\(\Leftrightarrow x=\frac{-12}{9}=\frac{-4}{3}\)
\(\Rightarrow x=\frac{-4}{2}\)
Bài 1. Áp dụng hằng đẳng thức :
a) (a + 1)(a + 2)(a^2 + 4)(a - 1)(a^2 +1)(a - 2).
b) (1- x- 2x^3+ 3x^2)(1- x + 2x^3- 3x^2).
Bài 2. Tính nhẩm theo hằng đẳng thức :
19^2 ; 28^2 ; 81^2 ; 91^2.
cho a 1
L.I.K.E
để a
làm hộ bn này bài này nào
bài 3 ; áp dụng hằng đẳng thức để thực hiện phép chia
h, ( 27x mũ 3 - 8 ) : ( 3x - 2 )
f, ( x mũ 2 - 2xy mũ 2 + y mũ 2 ) : ( x - y mũ 2 )
g, ( x mũ 4 - 2x mũ 2 + 1 ) : ( 1 - x mũ 2 )
h, \(27x^3-8=\left(3x-2\right)\left(9x^2+6x+4\right)\)
\(\Rightarrow\left(27x^3-8\right):\left(3x-2\right)\\ =\left(3x-2\right)\left(9x^2+6x+4\right):\left(3x-2\right)\\ =9x^2+6x+4\)
g, \(x^4-2x^2+1=\left(x^2-1\right)^2\)
\(\Rightarrow\left(x^4-2x^2+1\right):\left(1-x^2\right)\\ =\left(x^2-1\right)^2:\left(1-x^2\right)\\ =x^2-1\)