Cho \(x,y\ne0\)sao cho\(\frac{x^3+1}{y+1}+\frac{y^3+1}{x+1}\)là số nguyên
CM: \(x^{2016}-1⋮y+1\)
Cho các số thực \(x;y\ne0\)sao cho \(x+\frac{1}{y}\)và \(y+\frac{1}{x}\)là các số nguyên .CMR \(x^3y^3+\frac{1}{x^3y^3}\)là số nguyên
Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
=>\(xy+\frac{1}{xy}\in Z\)
=>\(\left(xy+\frac{1}{xy}\right)^3\)
=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)
=>ĐPCM
Tìm các cặp số nguyên (x,y) thỏa mãn\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\),\(\left(x\ne0,y\ne0\right)\)
=> x+y/xy =1/3 =>3.[(x-3)+3]=(x-3).y TH1:x-3=1;y-3=9 TH3:x-3= -1;y-3= -9 Vậy{x;y}={4;12};{6;6};{2;-6}
=>(x+y).3=xy =>3.(x-3)+9=(x-3).y =>x=4;y=12(TM) =>x=2;y= -6(TM)
=>3x + 3y=xy =>9=(x-3)(y-3) TH2:x-3=3;y-3=3 TH4:x-3=3;y-3=3
=>3x=xy-3y =>x-3;y-3 thuộc Ư(9) =>x=6;y=6(TM) =>x=0;y=0(L)
=>3x=(x-3).y
1)Cho x, y thỏa mãn \(y\left(x+y\right)\ne0\)và\(x^2-xy=2y^2\)Tính \(A=\frac{3x-y}{x+y}\)
2)Tìm a,b sao cho đa thức f(x)=ax+bx2+10x-4 chia hết cho đa thức g(x)=x2+x-2
3)Tìm số nguyên a sao cho a4 + 4 là số nguyên tố
4)Giải pt \(\frac{x}{x^2+4x+4}+\frac{5x}{x^2+4}=-2\)
5)Giải pt\(\frac{x^2+2x+1}{x^2-x+1}-\frac{x^2-2x+1}{x^2+x+1}=\frac{20}{7}\)
6)Cho các số dương x, y, z thỏa mãn x2+y2+z2=1
Cmr\(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{1}{3}\)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Cho \(x\ne0\),\(y\ne0\) và x+y=1. Tính\(B=\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
Giải nhanh hộ mk nha
Cho \(x\ne0,y\ne0,x+y=1\). Tính
\(B=\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x+y\right)}{x^2y^2+3}\)
Cho x, y là các số thực thỏa mãn điều kiện \(x+y=1\)và \(x,y\ne0\)
Chứng minh rằng: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}-\frac{2.\left(x-y\right)}{x^2y^2+3}=0\)
Ta có:
\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)
\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)
\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)
Ta lại có:
\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)
\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)
Theo đề bài ta có: (sửa đề luôn)
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)
\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
Em xin đóng góp cách 2 ạ
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)
\(=\frac{x^4-x-y^4+y}{x^3y^3-y^3-x^3+1}\)
\(=\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x^3+y^3\right)+1}\)
\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2}\)
\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{x^3y^3-\left(x^2-xy+y^2\right)+x^2+2xy+y^2}\)
\(=\frac{\left(x-y\right)\left[x^2+y^2-\left(x+y\right)^2\right]}{x^3y^3+3xy}\)
\(=\frac{\left(x-y\right).\left(-2\right)xy}{xy\left(x^2y^2+3\right)}\)
\(=\frac{-2\left(x-y\right)}{x^2y^2+3}\)
Do \(\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)
\(gt\Rightarrow y-1=-x\Rightarrow x-1=-y\)
\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
\(\Leftrightarrow\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left(x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+2xy+x^2+y^2+2\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)
\(\Leftrightarrow\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(dpcm\right)\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
1/ CMR:
a) với mọi x khác 1 biểu thức:
P = \(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\) luôn nhận giá trị dương
b) với mọi x, biểu thức:
Q = \(\frac{-2x^2-2}{x^4+2x^3+6x^2+2x+5}\) luôn nhận giá trị âm
2/ Cho \(x\ne0,y\ne0,z\ne0\) và x = y+z
\(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
CMR: \(\frac{1}{x^2}-\frac{1}{y^2}-\frac{1}{z^2}=1\)
3/ Cho \(a\ne0,b\ne0,c\ne0\) và
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)=\(\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\)
CMR: x = y = z = 0
a)Tìm cặp số x,y nguyên sao cho: \(\frac{x-1}{5}\)=\(\frac{3}{y+4}\)
b)Tìm các số nguyên x sao cho P=\(\frac{x-2}{x+1}\)nguyên
c)Tìm cặp số x,y nguyên sao cho: \(\frac{x}{3}\)- \(\frac{2}{y}\) = \(\frac{1}{6}\)