Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Nguyễn Khánh Linh
Xem chi tiết
Trần Nguyễn Khánh Linh
6 tháng 12 2017 lúc 21:12

Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)

=>\(xy+\frac{1}{xy}\in Z\)

=>\(\left(xy+\frac{1}{xy}\right)^3\)

=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)

=>ĐPCM

Quandung Le
Xem chi tiết
Võ Sỹ Thái Hào
5 tháng 5 2018 lúc 21:58

=> x+y/xy =1/3                 =>3.[(x-3)+3]=(x-3).y            TH1:x-3=1;y-3=9           TH3:x-3= -1;y-3= -9        Vậy{x;y}={4;12};{6;6};{2;-6}

=>(x+y).3=xy                   =>3.(x-3)+9=(x-3).y              =>x=4;y=12(TM)                   =>x=2;y= -6(TM)

=>3x + 3y=xy                  =>9=(x-3)(y-3)                     TH2:x-3=3;y-3=3            TH4:x-3=3;y-3=3

=>3x=xy-3y                    =>x-3;y-3 thuộc Ư(9)            =>x=6;y=6(TM)                    =>x=0;y=0(L)

=>3x=(x-3).y

Ngocmai
Xem chi tiết
pham trung thanh
18 tháng 2 2018 lúc 21:25

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

Ngô Đức Duy
Xem chi tiết
Ngô Đức Duy
Xem chi tiết
Nguyễn trần Ngọc Bích
Xem chi tiết
alibaba nguyễn
21 tháng 4 2017 lúc 10:24

Ta có:

\(\left(y^2+y+1\right)\left(x^2+x+1\right)\)

\(=x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1\)

\(=x^2y^2+x^2+y^2+2xy+2=x^2y^2+3\)

Ta lại có:

\(\left(y^2+y+1\right)-\left(x^2+x+1\right)=\left(y^2-x^2\right)+\left(y-x\right)\)

\(=\left(y-x\right)\left(x+y+1\right)=-2\left(x-y\right)\)

Theo đề bài ta có: (sửa đề luôn)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{x}{\left(y-1\right)\left(y^2+y+1\right)}-\frac{y}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{-1}{y^2+y+1}+\frac{1}{x^2+x+1}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\frac{\left(y^2+y+1\right)-\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(y^2+y+1\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}\)

\(=-\frac{2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

Arima Kousei
7 tháng 1 2019 lúc 19:14

Em xin đóng góp cách 2 ạ 

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}\)

\(=\frac{x^4-x-y^4+y}{x^3y^3-y^3-x^3+1}\)

\(=\frac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x^3+y^3\right)+1}\)

\(=\frac{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x+y\right)^2}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-1\right)}{x^3y^3-\left(x^2-xy+y^2\right)+x^2+2xy+y^2}\)

\(=\frac{\left(x-y\right)\left[x^2+y^2-\left(x+y\right)^2\right]}{x^3y^3+3xy}\)

\(=\frac{\left(x-y\right).\left(-2\right)xy}{xy\left(x^2y^2+3\right)}\)

\(=\frac{-2\left(x-y\right)}{x^2y^2+3}\)

Do \(\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(đpcm\right)\)

Con Chim 7 Màu
10 tháng 2 2019 lúc 21:14

\(gt\Rightarrow y-1=-x\Rightarrow x-1=-y\)

\(\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Leftrightarrow\frac{x^4-x-y^4+y}{\left(y^3-1\right)\left(x^3-1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-\left(x-y\right)}{xy\left(y^2+y+1\right)\left(x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(x^2-x+y^2-y\right)}{xy\left(x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1\right)}+\frac{2\left(x-y\right)}{x^2y^2-3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left[x\left(x-1\right)+y\left(y-1\right)\right]}{xy\left(x^2y^2+2xy+x^2+y^2+2\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)

\(\Leftrightarrow\frac{\left(x-y\right)\left(-2xy\right)}{xy\left(x^2y^2+3\right)}+\frac{2\left(x-y\right)}{x^2y^2+3}=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\left(dpcm\right)\)

tống thị quỳnh
Xem chi tiết
Thắng Nguyễn
10 tháng 8 2017 lúc 22:47

post từng câu một thôi bn nhìn mệt quá

Trân Vũ
Xem chi tiết
Lung Linh
Xem chi tiết