Tính giá trị của biểu thức : 6x\(^2\) +5x-2 tại x thỏa mãn | x-2 | =1
Tính giá trị của biểu thức 6x2+5x-2 Tại x thỏa mãn |x-2|=1
Xin lỗi bn nhiều nha TH1 mk lm sai :
\(x-2=1\Leftrightarrow x=3\)
Thay x = 3 vào biểu thức A ta có :
\(A=6.3^2+5.3-2=6.9+5.3-2=54+15-2=67\)
Vậy giá trị của biểu thức A tại x = 3 là 67
Ta có : \(|x-2|=1\Leftrightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Đặt \(A=6x^2+5x-2\)
Thay x = -1 vào biểu thức A ta có :
\(A=6.\left(-1\right)^2+5.\left(-1\right)-2=6.1+\left(-5\right)-2=6-5-2=-1\)
Vậy giá trị của biểu thức A tại x = -1 là -1
Thay x = 1 vào biểu thức A ta có :
\(A=6.1^2+5.1-2=6.1+5-2=6+5-2=9\)
Vậy giá trị của biểu thức A tại x = 1 là 9
1.Tính giá trị biểu thức: 6x^2+5x-2 tại x thõa mãn /x-2/=1
2.Tính giá trị biểu thức: 2x^8-3y^5+2 tại x,y thõa mãn (x+1)^20+(y+2)^26=0
3.Tính giá trị biểu thức: P=6x^3-4x^2y-14y^2+21xy+9 tại x,y thõa mãn 2x^2+7y=0
Mình đang cần gấp lắm ạ, mong mọi người giúp, mình cảm ơn nhiều ạ
1) a) Tính (3/4-81)(3^2/5-81)(3^3/6-81)..(3^2000/2003-81)
b) Tính giá trị của biểu thức: 6x^2+5x-2 tại x thõa mãn |x-2|=1
2) Tìm giá trị nguyên lớn nhất của biểu thức MN=15-x/5-x ?
Tính giá trị biểu thức 8x^2y+5x^3 tại x,y thỏa mãn:(x+1)^30+(y+2)^50=0
tính giá trị biểu thức sau:
M=3 mũ 2/2*5 + 3 mũ 2/5*8 + 3 mũ 2 /8*11 +....+ 3 mũ 2/98*101
Vì \(\left(x+1\right)^{30}+\left(y+2\right)^{50}\ge0\)mà theo đề bài ta có\(\left(x+1\right)^{30}+(y+2)^{50}=0\)
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^{30}=0\\\left(y+2\right)^{50}=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\y+2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\y=-2\end{cases}}\)
Vậy \(x=-1,y=-2\)
a) Tính giá trị của các biểu thức A= \(12x^{11}-15x^{7}-6x^{5} +2018\) tại x thỏa mãn \(4x^{6}-5x^{2}-2=0\)
b) Tìm nghiệm của đa thức M(x)=\(x^{2}-3x+x-3\)
a)Đang suy nghĩ...
b)\(M\left(x\right)=\left(x^2-3x\right)+\left(x-3\right)=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
a) \(12x^{11}-15x^7-6x^5+2018\)
\(=3x^5.\left(4x^6-5x^2-2\right)+2018\)
\(=3x^5.0+2018\)
\(=2018\)
cho biểu thức A = x2 + x +1 . Tính giá trị của biểu thức a tại giá trị của x thỏa mãn 212-2( x + 1)=1
Ta có:
212-2(X+1) =1
=> 212-2(X+1)= 20
=> 12 - 2(x+1) = 0
=> 2(x+1)=12
=>x+1=6
=> x=5
Thay x=5 vào biểu thức A= x2 +x+1 , ta được :
A = 52 + 5+1= 25+6 = 31
Vậy A = 31 tại x thỏa mãn 212 - 2(x+1)=1
b1
a) Tính gt của biểu thức : \(6x^2+5x-2\)
tại x thỏa mãn \(\left|x-2\right|=1\)
b) Tìm x,y,z biết : \(\dfrac{x-1}{2}=\dfrac{y-3}{4}=\dfrac{z-2}{3}\)
và x-3y+4z=4
helppppppppppppppppppppppppppppppppppppppppppppppp
a) Ta có: |x-2|=1
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Thay x=3 vào biểu thức \(6x^2+5x-2\), ta được:
\(6\cdot3^2+5\cdot3-2=54+15-2=67\)
Thay x=1 vào biểu thức \(6x^2+5x-2\), ta được:
\(6\cdot1^2+5\cdot1-2=6+5-2=9\)
Vậy: Khi |x-2|=1 thì giá trị của biểu thức \(6x^2+5x-2\) là 67 hoặc 9
Cho 2 biểu thức:
A= \(\dfrac{x+2}{x+5}\)+ \(\dfrac{-5x-1}{x^2+6x+5}\)- \(\dfrac{1}{1+x}\) và B= \(\dfrac{-10}{x-4}\) với x ≠-5, x ≠-1, x≠ 4
a) Tính giá trị của biểu thức B tại x= 2
b) Rút gọn biểu thức A
c) Tìm giá trị nguyên của x để P= A.B đạt giá trị nguyên
`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`
`b)` Với `x ne -1;x ne -5` có:
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`
`A=[x^2-3x-4]/[(x+1)(x+5)]`
`A=[(x+1)(x-4)]/[(x+1)(x+5)]`
`A=[x-4]/[x+5]`
`c)` Với `x ne -5; x ne -1; x ne 4` có:
`P=A.B=[x-4]/[x+5].[-10]/[x-4]`
`=[-10]/[x+5]`
Để `P` nguyên `<=>[-10]/[x+5] in ZZ`
`=>x+5 in Ư_{-10}`
Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`
`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)
A) tìm GTLN của biểu thúc A=(3x^2+6x+10)/(x^2+2x+3)
B) cho x>0 thỏa mãn x^2+1/x^2=7. tính giá trị của biểu thức B=x^2+1/x^2
a) \(A=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(A=\frac{3x^2+6x+9+1}{x^2+2x+3}\)
\(A=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}\)
\(A=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+1+2}\)
\(A=3+\frac{1}{^{\left(x+1\right)^2+2}}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-1\)