\(\left(x-12+y\right)^2+\left(y+4-x\right)^2=0\)
Tìm x;y
Giúp mình với!
a \(\left(x-1\right)^2-\left(y+1\right)^2=0\)
\(x+3y-5=0\)
b \(xy-2x-y+2=0\)
3x+y=8
c \(\left(x+y\right)^2-4\left(x+y\right)=12\)
\(\left(x-y\right)^2-2\left(x-y\right)=3\)
d \(2x-y=1\)
\(2x^2+xy-y^2-3y=-1\)
a.
\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)
TH1:
\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
c.
\(\left\{{}\begin{matrix}\left(x+y\right)^2-4\left(x+y\right)-12=0\\\left(x-y\right)^2-2\left(x-y\right)=3\end{matrix}\right.\)
Xét pt:
\(\left(x+y\right)^2-4\left(x+y\right)-12=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+y-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y+2=0\\x+y-6=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-x-2\\y=6-x\end{matrix}\right.\)
TH1: \(y=-x-2\) thế vào \(\left(x-y\right)^2-2\left(x-y\right)=3\)
\(\Rightarrow\left(2x+2\right)^2-2\left(2x+2\right)=3\)
\(\Leftrightarrow4x^2+4x-3=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\Rightarrow y=-\dfrac{5}{2}\\x=-\dfrac{3}{2}\Rightarrow y=-\dfrac{1}{2}\end{matrix}\right.\)
TH2: \(y=6-x\) thế vào...
\(\left(2x-6\right)^2-2\left(2x-6\right)=3\)
\(\Leftrightarrow4x^2-28x+45=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\Rightarrow y=\dfrac{7}{2}\\y=\dfrac{9}{2}\Rightarrow y=\dfrac{3}{2}\end{matrix}\right.\)
a) làm tính chia
\(\left[5\left(x-y\right)^4-3\left(x-y\right)^3+4\left(x-y\right)^2\right]:\left(y-x\right)^2\)
b) tìm \(x\)
\(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
ghi chú: đừng làm tắt được ko ạ?
b: Ta có: \(\left(4x^4-3x^3\right):\left(-x^3\right)+\left(15x^2+6x\right):3x=0\)
\(\Leftrightarrow-4x+3+5x+2=0\)
\(\Leftrightarrow x=-5\)
Cho hệ \(\hept{\begin{cases}\left(x+y\right)^2-4\left(x+y\right)=12\\\left(x-y\right)^2-2\left(x-y\right)=3\end{cases}}\)Tìm x,y
=> \(\hept{\begin{cases}x^2+2xy+y^2-4x+4y=12\\x^2-2xy+y^2-2x-2y=3\end{cases}}\)
Rồi đến đây tự làm nhé
HPT <=> \(\hept{\begin{cases}\left(x+y\right)^2-4\left(x+y\right)+4=16\\\left(x-y\right)^2-2\left(x-y\right)+1=4\end{cases}}\)<=> \(\hept{\begin{cases}\left(x+y-2\right)^2=4^2\\\left(x-y-1\right)^2=2^2\end{cases}}\)
=> \(\hept{\begin{cases}x+y-2=\pm4\\x-y-1=\pm2\end{cases}}\)
Có các TH:
1/ \(\hept{\begin{cases}x+y-2=4\\x-y-1=2\end{cases}}\)=> \(\hept{\begin{cases}x+y=6\\x-y=3\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{9}{2}\\y=\frac{3}{2}\end{cases}}\)
2/ \(\hept{\begin{cases}x+y-2=4\\x-y-1=-2\end{cases}}\)=> \(\hept{\begin{cases}x+y=6\\x-y=-1\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{7}{2}\end{cases}}\)
3/ \(\hept{\begin{cases}x+y-2=-4\\x-y-1=2\end{cases}}\)=> \(\hept{\begin{cases}x+y=-2\\x-y=3\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{1}{2}\\y=-\frac{5}{2}\end{cases}}\)
4/ \(\hept{\begin{cases}x+y-2=-4\\x-y-1=-2\end{cases}}\)=> \(\hept{\begin{cases}x+y=-2\\x-y=-1\end{cases}}\)=> \(\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{1}{2}\end{cases}}\)
cho x+y+z=1 và x,y,z>0
Tìm min của biểu thức
\(P=\frac{x^4}{\left(y^2+z^2\right)\left(y+z\right)}+\frac{y^4}{\left(x^2+z^2\right)\left(x+z\right)}+\frac{z^4}{\left(x^2+y^2\right)\left(y+z\right)}\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
ai giúp t với
1:\(\left\{\begin{matrix}x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
2:\(\left\{\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
3:\(\left\{\begin{matrix}y\left(x^2+2x+2\right)=x\left(y^2+6\right)\\\left(y-1\right)\left(x^2+2x+7\right)=\left(x+1\right)\left(y^2+1\right)\end{matrix}\right.\)
4:\(\left\{\begin{matrix}x-2\sqrt{y+1}=3\\x^3-4x^2\sqrt{y+1}-9x-8y=-52-4xy\end{matrix}\right.\)
5:\(\left\{\begin{matrix}\frac{y-2x+\sqrt{y}-x}{\sqrt{xy}}+1=0\\\sqrt{1-xy}+x^2-y^2=0\end{matrix}\right.\)
Tìm x,y biết
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(2\times x+2^{x+3}=136\)
\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\left(2\times x-5\right)^{2000}+\left(3\times y+4\right)^{2002}\le0\)
\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
đề sai câu b các câu sau áp dụng tương tự
c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)
mà \(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
Tìm tâm và bán kính của các đường tròn có phương trình:
a) \({\left( {x - 2} \right)^2} + {\left( {y - 7} \right)^2} = 64\)
b) \({\left( {x + 3} \right)^2} + {\left( {y + 2} \right)^2} = 8\)
c) \({x^2} + {y^2} - 4x - 6y - 12 = 0\)
a) Phương trình đường tròn \({\left( {x - 2} \right)^2} + {\left( {y - 7} \right)^2} = 64\) có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) nên đường tròn có tâm là \(I(2;7)\) và bán kinh \(R = \sqrt {64} = 8\)
b) Phương trình đường tròn \({\left( {x + 3} \right)^2} + {\left( {y + 2} \right)^2} = 8\) có dạng \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {R^2}\) nên đường tròn có tâm là \(I( - 3; - 2)\) và bán kinh \(R = \sqrt 8 = 2\sqrt 2 \)
c) Phương trình đường tròn \({x^2} + {y^2} - 4x - 6y - 12 = 0\) có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên đường tròn có tâm là \(I(2;3)\) và bán kinh \(R = \sqrt {{2^2} + {3^2} + 12} = 5\)
Giải hpt:\(\hept{\begin{cases}x\left(x^2+y^2\right)+y\left(xy+12\right)=0\\x^2+4\left(2y^2-3\right)=0\end{cases}}\)