Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran Minh Tai
Xem chi tiết
Phạm Thị Hậu
Xem chi tiết
lê thanh tùng
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 17:52

Lời giải:

$A=5x^2+y^2+4xy-2x-2y+2020$

$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$

$=(2x+y)^2-2(2x+y)+x^2+2x+2020$

$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$

$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$

Hay $x=-1; y=3$

nguyen ngoc son
Xem chi tiết
Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:01

c: \(-x^2+2x-2=-\left(x-1\right)^2-1\le-1\forall x\)

\(\Leftrightarrow V\ge-1\forall x\)

Dấu '=' xảy ra khi x=1

Phạm Thị Hoài Thu
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 9:57

Ta có :

A = x4 - 2x2 + x2 + 2x + 1 + 2019

A = ( x2 - 1 )2 + ( x + 1 )2 + 2019 \(\ge\)2019

Vậy GTNN của A là 2019 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}\Leftrightarrow x=-1}\)

Khách vãng lai đã xóa
Hồng Phong Nguyễn
Xem chi tiết
Lysr
16 tháng 3 2023 lúc 22:32

A = \(\dfrac{x^2-2x+2020}{2021x^2}\)

\(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)

\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)

\(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)

Dấu "=" xảy ra <=> x - 2020 = 0

                       <=> x = 2020

Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020

top 1 zuka
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 3 2021 lúc 22:25

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2