x-1/2013+x-2/2012=x-3/2011+x-4/2010
Tìm x
Hãy chứng minh A = B , biết:
A = 1 + (1+ 2) + (1+ 2+ 3) + ...........+ ( 1+ 2+ 3+ 4+ ...+ 2013)
B = 2013 x 1 + 2012 x 2 + 2011 x 3 + ......+ 2 x 2012 + 1 x 2013
x-1/2011+x-2/2012+x-3/2013+x-4/2014=x+2016
Tìm x biết: (1/2+1/3+1/4+...+1/2014).x =2013/1+2012/2+2011/3+...+2/2012+1/2013
trước tiên bạn phải tính:
2013/1+2012/2+2011/3+.....+2/2012+1/2013
=1+2012/2)+(1+2011/3)+.....+(1+2/2012)+(1+1/2013) +1 {BƯỚC NÀY TÁCH 2013 RA LÀM 2013SỐ1 ĐỂ CÔNG VS CÁC THỪA SỐ CÒN LẠI}
=2014/2+2014/3+...+2014/2012+2014/2013+2014/2014
=2014.(1/2+1/3+....+1/2012+1/20131/2014
suy ra x=2014
x-1/2014+x-2/2013=x-3/2012+x-4/2011
\(\dfrac{x-1}{2014}+\dfrac{x-2}{2013}=\dfrac{x-3}{2012}+\dfrac{x-4}{2011}\)
\(\Leftrightarrow\text{}\text{}\text{}\dfrac{x-1}{2014}-1+\dfrac{x-2}{2013}-1=\dfrac{x-3}{2012}-1+\dfrac{x-4}{2011}-1\)
\(\Leftrightarrow\dfrac{x-2015}{2014}+\dfrac{x-2015}{2013}-\dfrac{x-2015}{2012}-\dfrac{x-2015}{2011}=0\)
\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\right)=0\)
mà \(\dfrac{1}{2014}+\dfrac{1}{2013}-\dfrac{1}{2012}-\dfrac{1}{2011}\ne0\)
nên \(x-2015=0\)
\(\Leftrightarrow x=2015\)
X+1/2014+x+2/2013=x+3/2012+x+4/2011
x+1/2014 + x+2/2013 = x+3/2012 + x+4/2011
=> x+1/2014 + 1 + x+2/2013 + 1 = x+3/2012 + 1 + x+4/2011 + 1
=> x+2015/2014 + x+2015/2013 = x+2015/2012 + x+2015/2011
=> x+2015/2012 + x+2015/2011 - x+2015/2013 - x+2015/2014 = 0
=> (x + 2015).(1/2012 + 1/2011 - 1/2013 - 1/2014) = 0
Vì 1/2011 > 1/2013; 1/2012 > 1/2014
=> 1/2012 + 1/2011 - 1/2013 - 1/2014 khác 0
=> x + 2015 = 0
=> x = -2015
(x+4)/2011+(x+3)/2012=(x+2)/2013+(x+1)/2014.tìm x
bấm vào chữ xanh này nha bn : /hoi-dap/question/113985.html
Tìm x biết (x+4) /2010 + (x+3) / 2011 = (x+2) /2012 + (x+1) /2013
(x + 4)/2010 + (x+3)/2011 = (x+2)/2012 + (x+1)/2013
<=> [(x + 4)/2010 + 1] + [(x+3)/2011 + 1] = [(x+2)/2012 + 1] + [(x+1)/2013 + 1]
<=> (x + 2014)/2010 + (x + 2014)/2011 = (x + 2014)/2012 + (x + 2014)/2013
<=> (x + 2014)/2010 + (x + 2014)/2011 - (x + 2014)/2012 - (x + 2014)/2013 = 0
<=> (x + 2014).(1/2010 + 1/2011 - 1/2012 - 1/2013) = 0
Ta thấy (1/2010 + 1/2011 - 1/2012 - 1/2013) ≠ 0
Vậy suy ra x = -2014
x-1 / 2013 + x-2 / 2012 + x-3 / 2011 = x-4 / 2010 + x-5 / 2009 + x-6 / 2008
\(\dfrac{x-1}{2013}+\dfrac{x-2}{2012}+\dfrac{x-3}{2011}=\dfrac{x-4}{2010}+\dfrac{x-5}{2009}+\dfrac{x-6}{2008}\)
\(\Leftrightarrow\dfrac{x-1}{2013}-1+\dfrac{x-2}{2012}-1+\dfrac{x-3}{2011}-1=\dfrac{x-4}{2010}-1+\dfrac{x-5}{2009}-1+\dfrac{x-6}{2008}-1\)
=>x-2014=0
hay x=2014
a)2^x+2^x+1+2^x+2+2^x+3=480
b)(1/2+1/3+...+1/2012+1/2013)*x=2012/1+2011/2+2010/3+..+2/2011+1/2012
x+1/2013 + x+2/2012=x+3/2011 + x+4/2010
x+1/2013+1+x+2/2012+1=x+3/2011+1+x+4/2010+1
x+1+2013/2013+x+2+2012/2012=x+3+2011/2011+x+4+2010/2010
x+2014/2013+x+2014/2012-x+2014/2011-x+2014/2010=0
(x+2014)(1/2013+1/2012-1/2011-1/2010)=0
x+2014=0
x=-2014
\(\frac{x+1}{2013}+1+\frac{x+2}{2012}+1=\frac{x+3}{2011}+1+\frac{x+4}{2010}+1\)
\(\Rightarrow\frac{x+2014}{2013}+\frac{x+2014}{2012}=\frac{x+2014}{2011}+\frac{x+2014}{2010}\)
\(\Rightarrow\left(x+2014\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
\(\Rightarrow\left(x+2014\right)=0\)
\(\Rightarrow x=-2014\)