Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
D-low_Beatbox
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Đặng Tiến
27 tháng 7 2016 lúc 18:57

Ta có đẳng thức:

\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)

\(\Rightarrow Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

hoặc bạn áp dụng hệ thức holder á

Đặng Tiến
27 tháng 7 2016 lúc 19:03

Ta có:

\(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)

Mặt khác:

\(\left(xy+yz+zx\right)^2=1\le3\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(\Rightarrow\frac{1}{3}\le\left(x^2y^2+y^2z^2+z^2x^2\right)\)

hay \(x^4+y^4+z^4\ge\frac{1}{3}\Rightarrow A\ge\frac{1}{3}\)

Vậy \(Min_A=\frac{1}{3}\)khi \(x=y=z=\frac{1}{\sqrt{3}}\)

dia fic
Xem chi tiết
Trần Minh Hoàng
14 tháng 1 2021 lúc 10:38

Áp dụng bất đẳng thức AM - GM:

\(P\ge3\sqrt[3]{\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}}\).

Áp dụng bất đẳng thức AM - GM ta có:

\(xy+1=xy+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}\ge5\sqrt[5]{\dfrac{xy}{4^4}}\).

Tương tự: \(yz+1\ge5\sqrt[5]{\dfrac{yz}{4^4}};zx+1\ge5\sqrt[5]{\dfrac{zx}{4^4}}\).

Do đó \(\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)\ge125\sqrt[5]{\dfrac{\left(xyz\right)^2}{4^{12}}}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{1}{4^{12}\left(xyz\right)^3}}\).

Mà \(xyz\le\dfrac{\left(x+y+z\right)^3}{27}=\dfrac{1}{8}\)

Nên \(\dfrac{\left(xy+1\right)\left(yz+1\right)\left(zx+1\right)}{xyz}\ge125\sqrt[5]{\dfrac{8^3}{4^{12}}}=125\sqrt[5]{\dfrac{1}{2^{15}}}=\dfrac{125}{8}\)

\(\Rightarrow P\ge\dfrac{15}{2}\).

Vậy...

 

 

 

Huy Nguyen
17 tháng 1 2021 lúc 18:31

Áp dụng bất đẳng thức AM - GM:

P≥33√(xy+1)(yz+1)(zx+1)xyz.

Áp dụng bất đẳng thức AM - GM ta có:

xy+1=xy+14+14+14+14≥55√xy44.

Tương tự: yz+1≥55√yz44;zx+1≥55√zx44.

Do đó (xy+1)(yz+1)(zx+1)≥1255√(xyz)2412

⇒(xy+1)(yz+1)(zx+1)xyz≥1255√1412(xyz)3.

Mà xyz≤(x+y+z)327=18

Nên  (xy+1)(yz+1)(zx+1)xyz≥1255√83412=1255√1215=1258 

⇒P≥152.

Nguyễn Hoàng Long
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 9:14

\(P=\dfrac{1}{xyz\left(x+y+z\right)}-\dfrac{2}{xy+yz+zx}\ge\dfrac{3}{\left(xy+yz+zx\right)^2}-\dfrac{2}{xy+yz+zx}\)

\(P\ge3\left(\dfrac{1}{xy+yz+zx}-\dfrac{1}{3}\right)^2-\dfrac{1}{3}\ge-\dfrac{1}{3}\)

\(P_{min}=-\dfrac{1}{3}\) khi \(x=y=z=1\)

 

Nguyễn Minh Phúc
Xem chi tiết
Đoàn Đức Hà
27 tháng 5 2021 lúc 22:02

\(A=\frac{x^3}{y}+\frac{y^3}{z}+\frac{z^3}{x}\)

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)

\(\Leftrightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)

\(\Leftrightarrow\left(x+y+z-3\right)\left(x+y+z+6\right)\ge0\)

\(\Leftrightarrow x+y+z\ge3\)(vì \(x,y,z>0\)

Ta có: \(\frac{x^3}{y}+y+1\ge3x,\frac{y^3}{z}+z+1\ge3y,\frac{z^3}{x}+x+1\ge3z\)

Suy ra \(A\ge2\left(x+y+z\right)-3\ge2.3-3=3\)

Dấu \(=\)xảy ra khi \(x=y=z=1\).

Khách vãng lai đã xóa
Trần Thị Cẩm Nhung
Xem chi tiết
Trần Thị Cẩm Nhung
13 tháng 3 2016 lúc 18:44

mk k sửa đc mk viết thiếu đề là A=.....=2(ở trên)

PHAN THỊ QUỲNH THƯ
13 tháng 3 2016 lúc 20:33

bạn ko bít ak

Trần Thị Cẩm Nhung
14 tháng 3 2016 lúc 15:42

nếu bạn biết trả lời giúp mình đi nói thế làm gì

nguyen thao van
Xem chi tiết
Nguyễn Tuấn
1 tháng 3 2016 lúc 21:28

de thế mà ko biết lam

Vũ Trà Giang
21 tháng 3 2016 lúc 10:07

ai biết giải hộ. xin chỉ giáo

Vũ Trà Giang
21 tháng 3 2016 lúc 10:08

à quên thỉnh giáo

hà anh
Xem chi tiết
CT Hà Nhi
Xem chi tiết
Thanh Tùng DZ
30 tháng 4 2020 lúc 9:14

CM được BĐT : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge9\)\(\Rightarrow\frac{yz+xy+xz}{xyz}\ge9\)

\(\Rightarrow xy+yz+xz-9xyz\ge0\)

\(\Rightarrow A\ge-3xyz\ge3.\left[-\left(\frac{x+y+z}{3}\right)^3\right]=3.\left(-\frac{1}{27}\right)=\frac{-1}{9}\)

Vậy GTNN của A là \(\frac{-1}{9}\)khi \(x=y=z=\frac{1}{3}\)

Khách vãng lai đã xóa