Biểu thứ B=\(\frac{1}{\sqrt{x}+2016}\) đạt giá trị lớn nhất khi x bằng bao nhiêu
Biểu thức B= \(\frac{1}{\sqrt{x+2016}}\)đạt giá trị lớn nhất, khi x bằng...
Cho A=\(\frac{1}{x-2\sqrt{x-5}+3}\)
Tìm giá trị lớn nhất của A, giá trị đó đạt được khi x bằng bao nhiêu
ĐK: x>=5
Ta có:
\(x-2\sqrt{x-5}+3=x-5-2\sqrt{x-5}+1-1+5+3=\left(\sqrt{x-5}-1\right)^2+7\ge7\)
=> \(A=\frac{1}{x-2\sqrt{x-5}+3}\le\frac{1}{7}\)
Dấu "=" xảy ra <=> \(\left(\sqrt{x-5}-1\right)^2=0\Leftrightarrow\sqrt{x-5}-1=0\Leftrightarrow\sqrt{x-5}=1\Leftrightarrow x-5=1\Leftrightarrow x=6\left(tm\right)\)
Vậy Giá trị lớn nhất của A = 1/7 , đạt tại x =6.
Cho biểu thức
\(P=\left(\frac{1}{\sqrt{x}-1}+\frac{11}{x+\sqrt{x}+1}-\frac{34}{1-x\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\right)\)
a)Tìm điều kiện của x để P xác định, rút gọn P?
b) tính giá trị của P khi \(x=3-2\sqrt{2}\)
c)tìm giá trị nhỏ nhất của biểu thức P? Giá trị đó đạt được khi x bằng bao nhiêu?
a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)
b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:
\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)
\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)
làm giúp mk vs
a) Biến dổi \(x-\sqrt{3x}+1\) về dạng \(A^2+b\) với b là hằng số và A là một biểu thức
b) Suy ra giá trị lớn nhất của biểu thức \(\frac{1}{x-\sqrt{3x}+1}\) . Giá trị đó đạt được khi x bằng bao nhiêu?
b ) \(x-\sqrt{3x}+1=x-2\cdot\frac{\sqrt{3}}{2}+\frac{3}{4}-\frac{3}{4}+1\)
\(=\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)
vì \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2\ge0\)với mọi x
=> \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)voi moi x
=>\(\frac{1}{\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}}\le\frac{1}{\frac{1}{4}}\le4\)
=> max A \(\le4\)
dau = xay ra <=> \(\left(\sqrt{x}-\frac{\sqrt{3}}{2}\right)=0\Leftrightarrow x=\frac{3}{4}\)
cho A = \(\dfrac{1}{x-4\sqrt{x-4}+3}\).Tìm giá trị lớn nhất của A,giá trị đó đạt được khi x bằng bao nhiêu
ĐKXĐ: x>=4
\(A=\dfrac{1}{x-4\sqrt{x-4}+3}\)
\(=\dfrac{1}{x-4-4\sqrt{x-4}+4+3}\)
\(=\dfrac{1}{\left(\sqrt{x-4}-2\right)^2+3}\)
\(\left(\sqrt{x-4}-2\right)^2+3>=3\)
=>\(A=\dfrac{1}{\left(\sqrt{x-4}-2\right)^2+3}< =\dfrac{1}{3}\)
Dấu = xảy ra khi \(\sqrt{x-4}-2=0\)
=>x-4=4
=>x=8
a) Chứng minh: \(x^2+x\sqrt{3}+1=\left(x+\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\)
b) Tìm giá trị nhỏ nhất của biểu thức \(x^2+x\sqrt{3}+1\) Giá trị đó đạt được khi x bằng bao nhiêu ?
Chứng minh: x - x + 1 = x - 1 2 2 + 3 4 với x > 0. Từ đó, cho biết biểu thức 1 x - x + 1 có giá trị lớn nhất là bao nhiêu? Giá trị đó đạt được khi x bằng bao nhiêu?
Câu 1: Rút gọn
\(\dfrac{2}{\sqrt{5}-\sqrt{3}}+\dfrac{3}{\sqrt{6}+\sqrt{3}}\)
Câu 2:
Cho A= \(\dfrac{1}{x-2\sqrt{x-5}+3}\). Tìm giá trị lớn nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
1 quy đồng lên ra được
2 \(A=\dfrac{1}{x-2\sqrt{x-5}+3}\le\dfrac{1}{5-2.0+3}=\dfrac{1}{8}\)
dấu"=" xảy ra<=>x=5
Biểu thức W = -7 - |4x + 72| đạt giá trị lớn nhất khi x bằng bao nhiêu?
Vì |4x + 72| \geq≥ 0 ∀ x
⇒ -|4x + 72| \leq≤ 0 ∀ x
⇒ -|4x + 72| - 7 \leq 0≤0 - 7 ∀ x
⇒ -|4x + 72| - 7 \leq≤ -7 ∀ x
⇒ -7 - |4x + 72| \leq≤ -7 ∀ x
Suy ra W \leq≤ -7 ∀ x
Do đó, GTLN của W là -7, dấu "=" xảy ra khi |4x + 72| = 0 ⇒ 4x + 72 = 0 ⇒ x = -18
Vậy: x = -18
\(W\le-7\forall x\)
Dấu '=' xảy ra khi x=-18