Vẽ đồ thị hàm số sau trên 1 trục tọa độ y=\(\dfrac{2}{3},y=2x-3,y=-x+3\)
Cho hàm số có đồ thị sau:
(d₁): y = 2x - 3
(d₂): y = \(\dfrac{1}{2}x\)
a) Vẽ 2 đồ thị trên cùng 1 mặt phẳng tọa độ Oxy.
b) Tìm tọa độ giao điểm A của 2 đồ thị trên bằng phép toán.
Lời giải:
a. Bạn tự vẽ đồ thị
b. PT hoành độ giao điểm:
$2x-3=\frac{1}{2}x$
$\Rightarrow x=2$
Khi đó: $y=\frac{1}{2}x=\frac{1}{2}.2=1$
Vậy tọa độ giao điểm của 2 đường thẳng là $(2;1)$
Cho hàm số y = -\(\dfrac{3}{2}\)x\(^2\) có đồ thị (P) và y = -2x + \(\dfrac{1}{2}\) có đồ thị (d)
1/ Vẽ (P) và (d) trên cùng một hệ trục tọa độ vuông góc. Xác định tọa độ các giao điểm của (P) và (d).
2/ Tìm tọa độ những điểm trên (P) thỏa tính chât tổng hoành độ và tung độ của điểm đó bằng -4.
Cho hai hàm số sau :
y = \(\frac{1}{2}x+3\) và y = -2x +1
a, vẽ đồ thị của hàm số trên cùng 1 hệ trục tọa độ
b, tìm tọa độ điểm I của hai đường thẳng đó
c, Gọi giao điểm của đồ thị hàm số y = \(\dfrac{1}{2}x+3\) và y = - 2x +1 với trục hoành theo thứ tự A và B
tính các góc của tam giác AIB
Bài 1:
a, Biểu diễn các điểm sau trên hệ trục tọa độ Oxy: A(4;3), B(4;-2), C(-3;-2), D(0;-3), E(2;0)
b, Biểu diễn trên hệ trục tọa độ Oxy các điểm có tung độ bằng 2
c, Biểu diễn trên hệ trục tọa độ Oxy các điểm có hoành độ bằng 1
Bài 2:
a, vẽ đồ thị hàm số y= f(x) = 3x
b, vẽ đồ thị hàm số y= f(x) = -1/2x
Bài 3: Cho hàm số y= -2x
a, Biết A(3;yo) thuộc đồ thị hàm số y= -2x. Tính yo
b, Điểm B( 1;5;3) có thuộc đồ thị hàm số y= -2x hay không? Vì sao?
c, Vẽ đồ thị hàm số y= -2x
Phiền các bạn làm giúp mình nhé!!! THANKS YOU
Bài 3:
a: Thay x=3 vào y=-2x, ta được:
\(y=-2\cdot3=-6\)
b: Thay x=1,5 vào y=-2x, ta được:
\(y=-2\cdot1.5=-3< >3\)
Do đó: B(1,5;3) không thuộc đồ thị hàm số y=2x
Vẽ trên cùng hệ trục tọa độ Oxy đồ thị các hàm số sau đây:
y = x ( d 1 )
y = 2x ( d 2 )
y = -x + 3 ( d 3 )
*Vẽ đồ thị của hàm số y = x
Cho x = 0 thì y = 0
Cho x = 1 thì y = 1
Đồ thị hàm số y = x là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm (1; 1)
*Vẽ đồ thị hàm số y = 2x
Cho x = 0 thì y = 0
Cho x = 1 thì y = 2
Đồ thị hàm số y = 2x là đường thẳng đi qua gốc tọa độ O(0; 0) và điểm (1;2)
*Vẽ đồ thị của hàm số y = -x + 3
Cho x = 0 thì y = 3. Ta có điểm (0; 3)
Cho y = 0 thì x = 3. Ta có điểm (3; 0)
Đồ thị hàm số y = -x + 3 là đường thẳng đi qua hai điểm (0; 3) và (3; 0)
Câu 2: Cho hàm số \(y=f\left(x\right)=\dfrac{1}{2}x^2\) có đồ thị là (P)
a) Tính f(-2)
b) Vẽ đồ thị (P) trên mặt phẳng với hệ trục tọa độ Oxy
c) Cho hàm số y = 2x + 6 (d). Tìm tọa độ giao điểm của hai đồ thị (P) và (d)
Câu 3: Cho x1,x2 là hai nghiệm của phương trình x2 - 2x - 1 = 0
Tính giá trị của biểu thức P = (x1)3 + (x2)3
Câu 2:
c) Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{1}{2}x^2=2x+6\)
\(\Leftrightarrow\dfrac{1}{2}x^2-2x-6=0\)
\(\Leftrightarrow x^2-4x-12=0\)
\(\Leftrightarrow x^2-4x+4=16\)
\(\Leftrightarrow\left(x-2\right)^2=16\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=4\\x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
Thay x=6 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot6^2=18\)
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Vậy: Tọa độ giao điểm của (P) và (d) là (6;18) và (-2;2)
Câu 3:
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{1}=2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-1}{1}=-1\end{matrix}\right.\)
Ta có: \(P=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1x_2\left(x_1+x_2\right)\)
\(=2^3-3\cdot\left(-1\right)\cdot2\)
\(=8+3\cdot2\)
\(=8+6=14\)
Vậy: P=14
a, \(f\left(-2\right)=\dfrac{1}{2}.\left(-2\right)^2=\dfrac{1}{2}.4=2\)
b,
c, Tọa độ giao điểm của 2 đồ thị (P) và (d) thỏa mãn phương trình
\(2x+6=\dfrac{1}{2}x^2\Leftrightarrow x=6;x=-2\)
TH1 : Thay x = 6 vào f(x) ta được : \(\dfrac{1}{2}.6^2=18\)
TH2 : Thay x = -2 vào f(x) ta được : \(\dfrac{1}{2}.\left(-2\right)^2=2\)
Vậy tọa độ giao điểm của (P) và (d) là \(\left(6;18\right);\left(-2;2\right)\)
Bài 9 Vẽ đồ thị các hàm số sau trên cùng một hệ trục tọa độ và tìm tọa độ giao điểm của 2 đường thẳng đó
a/ y= 3x-2 và y= x-3
c/ y = 2x + 1 và y= -2x
d/ y= và y = x – 1
a: Phương trình hoành độ giao điểm là:
3x-2=x-3
\(\Leftrightarrow2x=-1\)
hay \(x=-\dfrac{1}{2}\)
Thay \(x=-\dfrac{1}{2}\) vào y=x-3, ta được:
\(y=-\dfrac{1}{2}-3=\dfrac{-7}{2}\)
Cho (d1):y= -2x + 3 và (d2):y= \(\dfrac{1}{2}x\)
a) Vẽ 2 đồ thị hàm số trên cùng một hệ trục tọa độ.
b) Tìm tọa độ giao điểm của hai đồ thị bằng phép toán.
c) Viết ptdt (D) đi qua 2 điểm A(4;3) và B(-1;2).\
Lời giải:
a.
Đồ thị xanh lá là $y=-2x+3$, xanh nước biển là $y=\frac{1}{2}x$
b. PT hoành độ giao điểm:
$y=-2x+3=\frac{1}{2}x$
$\Leftrightarrow x=\frac{6}{5}$
$y=\frac{1}{2}.\frac{6}{5}=\frac{3}{5}$
Vậy tọa độ giao điểm là $(\frac{6}{5}, \frac{3}{5})$
c.
$Gọi ptđt có dạng $y=ax+b$
Vì $A,B\in (d)$ nên:
\(\left\{\begin{matrix} y_A=ax_A+b\\ y_B=ax_B+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 3=4a+b\\ 2=-a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{5}\\ b=\frac{11}{5}\end{matrix}\right.\)
Vậy ptđt là $y=\frac{1}{5}x+\frac{11}{5}$
Vẽ đồ thị các hàm số sau trên cùng 1 mặt phẳng tọa độ và tìm tọa độ giao điểm của 2 đường thẳng đó:
a) y = 2x và y = -3x + 5
b) y = 3x + 2 và y = \(-\dfrac{1}{2}x+1\)
c) y = \(\dfrac{3}{2}x-2\) và y = \(-\dfrac{1}{2}x\:+2\)
d) y = -2x + 5 và y = x + 2
Bạn tự vẽ nhé.
\(a,\) 2 đồ thị hàm số \(y=2x,y=-3x+5\) giao nhau khi và chỉ khi :
\(2x=-3x+5\\ \Leftrightarrow5x=5\\ \Leftrightarrow x=1\)
Thay \(x=1\) vào \(y=2x\Leftrightarrow y=2\)
Vậy giao điểm của 2 đồ thị là \(\left(1;2\right)\)
\(b,\) 2 đồ thị hàm số \(y=3x+2,y=-\dfrac{1}{2}x+1\) giao nhau khi và chỉ khi :
\(3x+2=-\dfrac{1}{2}x+1\\ \Leftrightarrow\dfrac{7}{2}x=-1\\ \Leftrightarrow x=-\dfrac{2}{7}\)
Thay \(x=-\dfrac{2}{7}\) vào \(y=3x+2\Rightarrow y=\dfrac{8}{7}\)
Vậy giao điểm của 2 đồ thị là \(\left(-\dfrac{2}{7};\dfrac{8}{7}\right)\)
\(c,\) 2 đồ thị hàm số \(y=\dfrac{3}{2}x-2,y=-\dfrac{1}{2}x+2\) giao nhau khi và chỉ khi :
\(\dfrac{3}{2}x-2=-\dfrac{1}{2}x+2\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
Thay \(x=2\) vào \(y=\dfrac{3}{2}x-2\Rightarrow y=1\)
Vậy giao điểm của 2 đồ thị là \(\left(2;1\right)\)
\(d,\) 2 đồ thị hàm số \(y=-2x+5,y=x+2\) giao nhau khi và chỉ khi :
\(-2x+5=x+2\\ \Leftrightarrow-3x=-3\\ \Leftrightarrow x=1\)
Thay \(x=1\) vào \(y=x+2\Rightarrow y=3\)
Vậy giao điểm của 2 đồ thị là \(\left(1;3\right)\)
Tìm toàn độ giao điểm của mỗi đồ thị hàm số sau với 2 trục tọa độ
a) y=2x-3 b) y=\(\dfrac{-3}{4}\)x c) y=2x2
d) y= \(\dfrac{x+1}{x-2}\) e) y=x-2+\(\dfrac{1}{x}\) f) y=x2+2x-5
a:Đặt (d1): y=2x-3
Tọa độ giao điểm của (d1) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d1) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0-3=0-3=-3\end{matrix}\right.\)
b: Đặt (d2): \(y=-\dfrac{3}{4}x\)
Tọa độ giao điểm của (d2) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{3}{4}x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d2) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=-\dfrac{3}{4}x=-\dfrac{3}{4}\cdot0=0\end{matrix}\right.\)
c: Đặt \(\left(d3\right):y=2x^2\)
Tọa độ giao điểm của (d3) với trục Ox là:
\(\left\{{}\begin{matrix}2x^2=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y=2x^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=2\cdot0^2=0\end{matrix}\right.\)
Tọa độ giao điểm của (d3) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0^2=0\end{matrix}\right.\)
d: Đặt (d4): \(y=\dfrac{x+1}{x-2}\)
ĐKXĐ: x<>2
Tọa độ giao điểm của (d4) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\y=\dfrac{x+1}{x-2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
Tọa độ giao điểm của (d4) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=\dfrac{x+1}{x-2}=\dfrac{0+1}{0-2}=\dfrac{1}{-2}=-\dfrac{1}{2}\end{matrix}\right.\)
e: Đặt (d5): \(y=x-2+\dfrac{1}{x}\)
ĐKXĐ: x<>0
Vì hàm số không đi qua điểm có hoành độ là x=0 nên (d5) sẽ không cắt trục Oy
Tọa độ giao điểm của (d5) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\x-2+\dfrac{1}{x}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-2x+1=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
f: Đặt (d6): \(y=x^2+2x-5\)
Tọa độ giao điểm của (d6) với trục Oy là:
\(\left\{{}\begin{matrix}x=0\\y=x^2+2x-5=0^2+2\cdot0-5=-5\end{matrix}\right.\)
Tọa độ giao điểm của (d6) với trục Ox là:
\(\left\{{}\begin{matrix}y=0\\x^2+2x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x^2+2x+1-6=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\left(x+1\right)^2=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x+1=\sqrt{6}\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x+1=-\sqrt{6}\end{matrix}\right.\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=\sqrt{6}-1\end{matrix}\right.\\\left\{{}\begin{matrix}y=0\\x=-\sqrt{6}-1\end{matrix}\right.\end{matrix}\right.\)