\(\frac{x-1}{100}+\frac{x-10}{91}+\frac{x-17}{84}=3\)
Tìm x biết: \(\frac{x-1}{100}+\frac{x-10}{91}+\frac{x-17}{84}=3\)
Giải các phương trình sau
1) \(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
2)\(\frac{x-1}{13}-\frac{2x-13}{15}=\frac{3x-15}{27}-\frac{4x-27}{29}\)
3)\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{91}+4=0\)
4)\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
Phương trình 1:
\(\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}=10\)
\(\Rightarrow\frac{x-85}{15}+\frac{x-74}{13}+\frac{x-67}{11}+\frac{x-64}{9}-10=0\)
\(\Rightarrow\left(\frac{x-85}{15}-1\right)+\left(\frac{x-74}{13}-2\right)+\left(\frac{x-67}{11}-3\right)+\left(\frac{x-64}{9}-4\right)=0\)
\(\Rightarrow\frac{x-85-15}{15}+\frac{x-74-26}{13}+\frac{x-67-33}{11}+\frac{x-64-36}{9}=0\)
\(\Rightarrow\frac{x-100}{15}+\frac{x-100}{13}+\frac{x-100}{11}+\frac{x-100}{9}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\right)=0\)
Do \(\frac{1}{15}+\frac{1}{13}+\frac{1}{11}+\frac{1}{9}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
Phương trình 3:
\(\frac{1909-x}{91}+\frac{1907-x}{93}+\frac{1905-x}{95}+\frac{1903-x}{97}+4=0\)
\(\Rightarrow\left(\frac{1909-x}{91}+1\right)+\left(\frac{1907-x}{93}+1\right)+\left(\frac{1905-x}{95}+1\right)+\left(\frac{1903-x}{97}+1\right)=0\)
\(\Rightarrow\frac{1909-x+91}{91}+\frac{1907-x+93}{93}+\frac{1905-x+95}{95}+\frac{1903-x+97}{97}=0\)
\(\Rightarrow\frac{2000-x}{91}+\frac{2000-x}{93}+\frac{2000-x}{95}+\frac{2000-x}{97}=0\)
\(\Rightarrow\left(2000-x\right)\left(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\right)=0\)
Do \(\frac{1}{91}+\frac{1}{93}+\frac{1}{95}+\frac{1}{97}\ne0\)
\(\Rightarrow2000-x=0\)
\(\Rightarrow x=2000\)
Vậy x = 2000.
Phương trình 4:
\(\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}=15\)
\(\Rightarrow\frac{x-90}{10}+\frac{x-76}{12}+\frac{x-58}{14}+\frac{x-36}{16}+\frac{x-15}{17}-15=0\)
\(\Rightarrow\left(\frac{x-90}{10}-1\right)+\left(\frac{x-76}{12}-2\right)+\left(\frac{x-58}{14}-3\right)+\left(\frac{x-36}{16}-4\right)+\left(\frac{x-15}{17}-5\right)=0\)
\(\Rightarrow\frac{x-90-10}{10}+\frac{x-76-24}{12}+\frac{x-58-42}{14}+\frac{x-36-64}{16}+\frac{x-15-85}{17}=0\)
\(\Rightarrow\frac{x-100}{10}+\frac{x-100}{12}+\frac{x-100}{14}+\frac{x-100}{16}+\frac{x-100}{17}=0\)
\(\Rightarrow\left(x-100\right)\left(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\right)=0\)
Do \(\frac{1}{10}+\frac{1}{12}+\frac{1}{14}+\frac{1}{16}+\frac{1}{17}\ne0\)
\(\Rightarrow x-100=0\)
\(\Rightarrow x=100\)
Vậy x = 100.
16, giải phương trình.
1, \(\frac{x+5}{65}+\frac{x+10}{60}=\frac{x+15}{55}+\frac{x+20}{50}\)
2, \(\frac{x+91}{81}+\frac{x+92}{82}+\frac{x+93}{83}=3\)
3, \(\frac{59-x}{19}+\frac{58-x}{18}=\frac{57-x}{17}+\frac{56-x}{16}\)
4, \(\frac{x}{15}+\frac{x+1}{16}+\frac{x+2}{17}+\frac{x+3}{18}+\frac{x+4}{19}=5\)
Giải phương trình sau:
1) \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+6}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
2) \(\frac{x-241}{17}+\frac{x-220}{19}+\frac{x-195}{21}+\frac{x-166}{23}=0\)
3) \(\frac{x+2}{13}+\frac{2x-45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)
\(\Leftrightarrow\left(\frac{x+14}{86}+1\right)+\left(\frac{x+15}{85}+1\right)+\left(\frac{x+16}{84}+1\right)+\left(\frac{x+17}{83}+1\right)+\left(\frac{166}{4}-4\right)=0\)
\(\Leftrightarrow\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow\left(x+100\right).\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x+100\right)=0\Rightarrow x=-100\left(\text{vì }\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)
\(\frac{x+100}{99}+\frac{x+100}{96}+\frac{x+100}{93}+\frac{x+100}{91}=0\)
(x+100)*(1/99+1/96+1/93+1/91)=0
suy ra x+100=0
suy ra x=-100
Giải phương trình:
a) (x-1)x(x+1)(x+2)=24
b)\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
c) x4+3x3+4x2+3x+1=0
a) (x-1)x(x+1)(x+2) = 24
<=> [(x-1)(x+2)][x(x+1) = 24
<=> (x^2+x-2)(x^2+x) = 24 (1)
Đặt t=x^2+x-1 = (x+1/2)^2 - 5/4 (*)
(1) trở thành (t-1)(t+1) = 24
<=> t^2 - 1 - 24 = 0
<=> t^2 - 25 = 0
<=> t^2 = 25
<=> t=5 hoặc t=-5
Mà t >= -5/4 ( từ *) => t = (x+1/2)^2-5/4 = 5
<=> (x+1/2)^2 = 25/4
Đến đây dễ r`
c) x^4 + 3x^3 + 4x^2 + 3x + 1 = 0
<=> x^4 + x^3 + 2x^3 + 2x^2 + 2x^2 + 2x + x + 1 = 0
<=> (x+1)(x^3 + 2x^2 + 2x + 1) = 0
<=> (x +1)(x^3 + x^2 + x^2 + x + x + 1) = 0
<=> (x+1)^2.(x^2+x+1) = 0
Mà x^2+x+1 = (x+1/2)^2 + 3/4 > 0
Nên x+1=0 <=> x=-1
Vậy ...
b, cộng 1 vào 4 phân thức đầu,trừ 4 ở pt cuối ,rồi đặt đc NTC (x+100)
GPT:
a, (x-1)x(x+1)(x+2)=24
b, \(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+17}{83}+\frac{x+116}{4}=0\)
\(c,x^4+3x^3+4x^2+3x+1\)
c)Ta có: \(x^4+3x^3+4x^2+3x+1=0\)
\(\Leftrightarrow x\left(x^3+2x^2+2x+1\right)+1\left(x^3+2x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+2x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
Ta có: \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\) nên vô nghiệm
Suy ra x + 1 =0 hay x = -1
Tìm x, biết:
\(\frac{3}{\left(x+2\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+2\right)\left(x+17\right)}\left(x\notin-2;-5;-10;-17\right)\)
\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=-\frac{3}{4}\)
Với \(x\notin1;3;8;20\)
\(\frac{x+1}{10}+\frac{2+1}{11}\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\frac{x-10}{30}+\frac{x-14}{43}+\frac{x-5}{95}+\frac{x-148}{8}=0\)
Tìm x, biết:
3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x∉−2;−5;−10;−17)
2(x−1)(x−3) +5(x−3)(x−8) +12(x−8)(x−20) −1x−20 =−34 (x∉1;3;8;20)
x+110 +2+111 x+112 =x+113 +x+114
x−1030 +x−1443 +x−595 +x−1488 =0
Tìm x, biết : \(\left[\frac{45\frac{10}{63}-44\frac{25}{84}}{\left(2\frac{1}{3}-1\frac{1}{9}\right):4-\frac{3}{4}}:31\right].x=-\frac{1}{16}\)