cho a,b,c >0 thảo mãn a^2+b^2+c^2 =1
tìm GTNN của:A=a+b+c+1/abc
giúp mình với
cho a,b,c là các số dương thoả mãn ab+bc+ac=1
Tìm GTNN\(P=\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}+\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}+\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}\)
Với \(ab+bc+ca=1\) và a,b,c>0 ta có:
\(\left\{{}\begin{matrix}\sqrt{a^2+1}=\sqrt{\left(a+b\right)\left(c+a\right)}\\\sqrt{b^2+1}=\sqrt{\left(b+c\right)\left(a+b\right)}\\\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(b+c\right)}\end{matrix}\right.\). Do đó:
\(\dfrac{\sqrt{a^2+1}.\sqrt{b^2+1}}{\sqrt{c^2+1}}=a+b\)
Tương tự: \(\dfrac{\sqrt{b^2+1}.\sqrt{c^2+1}}{\sqrt{a^2+1}}=b+c\) ; \(\dfrac{\sqrt{c^2+1}.\sqrt{a^2+1}}{\sqrt{b^2+1}}=c+a\)
\(\Rightarrow P=2\left(a+b+c\right)\)
\(\Rightarrow P^2=4\left(a+b+c\right)^2\ge4.3\left(ab+bc+ca\right)=4.3.1=12\)
\(\Rightarrow P\ge2\sqrt{3}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{\sqrt{3}}{3}\)
Vậy \(MinP=2\sqrt{3}\)
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Giúp mình bài này với!Thanks nhiều!Có kèm lời giải nha!
1.Cho a,b,c>0 thỏa mãn a+b+c=1
Tìm GTNN của A=bc:a+ca:b+ab:c
2.Cho a,b,c,d thỏa mãn a^2+b^2+c^2+d^2=a.(b+c+d)
Tìm tổng a+b+c+d
Cho a;b;c thỏa mãn:-1≤a;b;c≤2 và a+b+c=1.Tìm GTLN của:a^2+b^2+c^2
cho a,b,c thoả mãn a,b,c>0 và a+b+c<=1. tìm GTNN của a^2 + b^2 + c^2 + 1/a^2 + 1/b^2 + 1/c^2
Với các số thực ko âm a,b,c thõa mãn a^2+b^2+c^2=1
tìm M= căn a + b + căn b + c + căn c + a
Mình nghĩ là tìm Min, Max \(M=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\).
Tìm Min: Ta có \(M^2\ge a+b+b+c+c+a=2\left(a+b+c\right)\ge2\sqrt{a^2+b^2+c^2}=2\).
Do đó \(M\geq\sqrt{2}\).Đẳng thức xảy ra khi a = b = 0; c = 1.
Tìm Max: Ta có \(M\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}=\sqrt[4]{108}\).
Với a,b,c \(\ge0 \) thoả mãn a+b+c=1
TÌM GTNN CỦA \(Q=\sqrt{7a+9}+\sqrt{7b+9}+\sqrt{7c+9}\)
Cho các số a,b,c thoả mãn a+b+c=0 và -1<a;b;c<2. Tìm GTNN của a^2+b^2+c^2
Vì \(a^2,b^2,c^2\ge0\) nên \(a^2+b^2+c^2\ge0\). ĐTXR \(\Leftrightarrow a=b=c=0\), thỏa mãn đk đề bài. Vậy GTNN của \(a^2+b^2+c^2\) là 0, xảy ra khi \(a=b=c=0\)