Tìm GTLN của M=(3x2+6x +10) / (x2+2x+3) với x thuộc tập hợp số thực..
giải giúp mình cụ thể nhé.!
Tìm GTLN của biểu thức B = 16x3- x6 (với x thuộc tập hợp các số thực dương)
giúp mình với ạ. Cảm ơn
\(\text{Đặt: }x^3=a\Rightarrow B=16a-a^2=-64+16a-a^2+64=-\left(a-8\right)^2+64\le64.\text{ Do đó: }B_{max}=64.\text{Dấu }"="\text{ xảy ra khi: }a=8\text{ hay: }x=2\)
Tìm GTLN của: C=-x^2-y^2+xy+2x+2y
Giải cụ thể giúp mình nha
\(C=-x^2-y^2+xy+2x+2y\Leftrightarrow2C=-2x^2-2y^2+2xy+4x+4y=-\left(x^2-2xy+y^2\right)-\left(x^2-4x+4\right)-\left(y^2-4y+4\right)+8=-\left[\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2\right]+8\le8\)\(\Rightarrow C\le4\)
Dấu đẳng thức xảy ra <=> x = y = 2
Vậy \(MaxC=4\Leftrightarrow x=y=2\)
Tìm GTLN của -3x^2+6x+10
Chứng minh F(x)=x^6-2x^3+3x^2-5x+1/2x^3+12+3x2-6x vô nghiệm
tìm GTNN của: 2x^2+9y^2-6xy-6x-12y+2010
Tìm GTLN: -x^2+2xy-4y^2+2x-10y-8
Tìm GTLN: |x-4|(2-|x-4|)-95
CÁC BẠN GIẢI ĐÀY ĐỦ GIÚP MÌNH NHÉ
2x/x+3 - x-1/3-x = 3x2+1/ x2-9
giải giúp mình với
`[2x]/[x+3]-[x-1]/[3-x]=[3x^2+1]/[x^2-9]` `ĐK: x \ne +-3`
`<=>[2x(x-3)+(x-1)(x+3)]/[(x-3)(x+3)]=[3x^2+1]/[(x-3)(x+3)]`
`=>2x^2-6x+x^2+3x-x-3=3x^2+1`
`<=>-4x=4`
`<=>x=-1` (t/m)
Vậy `S={-1}`
1 a) Cho a+b = 6. Tìm GTNN của a2 + b2
b) Tìm GTLN của :
- ( 2x - 1 )2 + 10| 2 x - 1| + 2018
Các bạn giải cụ thể ra cho mình lun nhé <3
mình cảm ơn :*
b, -(2x-1)2+10I2x-1I+2018
Vì :
(2x-1)2 >= 0 với mọi x
=> -(2x-1)2 =< -0 với mọi x 1
I2x-1I >= 0 với mọi x
=> 10I2x-1I >= 0 với mọi x 2
Từ (1) và (2) :
=> -(2x-1)2+10I2x-1I =< -0 với mọi x
=> -(2x-1)2+10I2x-1I +2018 =< -0+2018 với mọi x
=> -(2x-1)2+10I2x-1I +2018 =< - 2018 với mọi x
=> GTLN là -2018
Vậy GTLN là -2018 .
tìm GTNN hoặc GTLN của A = 3x2+2x-3
B = (x2+x+20): x2 +x +5
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
ĐỀ THI HỌC KỲ I
Câu 1 : giải phương trình ln (3x2 - 2x +1) = ln ( 4x - 1)
Câu 2 : Tìm tập hợp các giá trị của tham số m để phương trình 3x + 3 = m \(\sqrt{9^x+1}\) có đúng 1 nghiệm
Câu 3 : Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số y = -x3 + 3mx + 1 có 2 điểm cực trị A , B sao cho tam giác OAB vuông tại O ( với O là gốc tọa độ )
1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2 với x ≠ 2
2. Tìm GTLN của Bthức: C= x2 + 4x - 14 : x2 -2x +1 với x≠ 1
giúp mình với ạ, mình cảm ơn nhiều ạ
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)