Xác định M để ptrinh sau nghiệm ứng với mọi x
(M2 - 4M + 3)x + M - M2 < 0
Bài 3: xác định m để bất phương trình (m2-4m+3)x+m-m2<0 nghiệm đúng với mọi x
Xác định m đẻ bất phương trình có nghiệm đúng với mọi x
(m2−4m+3)x+m−m2<0
\(m^2-4m+3=\left(m-1\right)\left(m-3\right)\)
\(m^2-m=m\left(m-1\right)\)
\(\left(m^2-4m+3\right)x< m^2-m\Leftrightarrow\left(m-1\right)\left(m-3\right)x< m\left(m-1\right)\)(1)
+) TH1: (m-1)(m-3)=0 <=> \(\orbr{\begin{cases}m-1=0\\m-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}}\)
Với m=1 thay vào (1): 0x<0 Vô lí
=> m=1, bất phương trình (1) vô nghiệm
Với m=3 thay vào (1), ta có: 0x<6 ( luôn đúng)
=> m=3, bất phương trình (1) có nghiệm với mọi x
+)TH2: \(\left(m-1\right).\left(m-3\right)>0\Leftrightarrow\orbr{\begin{cases}m>1\\m< 3\end{cases}}\)
(1) có nghiệm : \(x< \frac{m}{m-3}\)
+) TH3: 1<m<3
(1) có nghiệm :: \(x>\frac{m}{m-3}\)
Từ các trường hợp trên: Để bất phương trình có nghiệm đúng với mọi x : m=3
Xác định m đẻ bất phương trình có nghiệm đúng với mọi x
(m2−4m+3)x+m−m2<0
Xác định m đẻ bất phương trình có nghiệm đúng với mọi x
(m2−4m+3)x+m−m2<0
cần m^2 -4m +3 =0 => m=1 hoặc m=3
với m =1 => <0=> loiaj
với m=3 có -3 <0 đúng nhận
xác định tham số m để pt bậc hai sau đây có nghiệm thỏa mãn x12+x22=25
x2-(2m+x)x+m2+3=0
Kiểm tra lại đề chỗ \(...\left(2m+x\right)...\)
Cho phương trình m 2 - 3 m + 2 x + m 2 + 4 m + 5 = 0 . Tìm tất cả các giá trị thực của tham số m để phương trình đã cho có nghiệm đúng với mọi x thuộc R.
A. m = −2.
B. m = −5.
C. m = 1.
D. Không tồn tại.
Phương trình đã cho nghiệm đúng với hay phương trình có vô số nghiệm khi
m 2 − 3 m + 2 = 0 − ( m 2 + 4 m + 5 ) = 0 ⇔ m = 1 m = 2 m ∈ ∅ ⇔ m ∈ ∅
Đáp án cần chọn là: D
cho pt : x2 - 2(m+1)x + m2 - 4m + 5 = 0
a. Xác định m để pt có 2 nghiệm x1,x2
b. Tìm m để x12-x12=12
Gấp ạ
a: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2-4m+5\right)\)
\(=4\left(m+1\right)^2-4\left(m^2-4m+5\right)\)
\(=4m^2+8m+4-4m^2+16m-20\)
=24m-16
Để phương trình có hai nghiệm thì Δ>=0
=>24m-16>=0
=>24m>=16
=>\(m>=\dfrac{2}{3}\)
b: Bạn xem lại đề nha bạn
Bài 3: Tìm điều kiện để phương trình có nghiệm đúng với mọi x thuộc R
c)m²x = 9x+ m² - 4m +3
d)m2(x-1)-4mx=-5m+4
\(c,PT\Leftrightarrow m^2x-9x-\left(m^2-4m+3\right)=0\\ \Leftrightarrow x\left(m^2-9\right)-\left(m-3\right)\left(m-1\right)=0\)
PT có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-9=0\\\left(m-3\right)\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow m=3\)
\(d,PT\Leftrightarrow m^2x-m^2-4mx+5m-4=0\\ \Leftrightarrow x\left(m^2-4m\right)-\left(m^2-5m+4\right)=0\\ \Leftrightarrow xm\left(m-4\right)-\left(m-1\right)\left(m-4\right)=0\)
PT có nghiệm đúng với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-4\right)=0\\\left(m-4\right)\left(m-1\right)=0\end{matrix}\right.\Leftrightarrow m=4\)
Cho phương trình (ẩn x): x3 – (m2 – m + 7)x – 3(m2 – m – 2) = 0
a) Xác định a để phương trình có một nghiệm x = – 2.
b) Với giá trị a vừa tìm được, tìm các nghiệm còn lại của phương trình.
Đối với mỗi phương trình sau, hãy tìm giá trị của m để phương trình có nghiệm, tính nghiệm của phương trình theo m: 2 x 2 – (4m + 3)x + 2 m 2 – 1 = 0
2 x 2 – (4m + 3)x + 2 m 2 – 1 = 0 (2)
Phương trình (2) có nghiệm khi và chỉ khi ∆ ≥ 0
Ta có: ∆ = - 4 m + 3 2 – 4.2(2 m 2 – 1)
= 16 m 2 + 24m + 9 – 16 m 2 + 8 = 24m + 17
∆ ≥ 0 ⇔ 24m + 17 ≥ 0 ⇔ m ≥ -17/24
Vậy khi m ≥ -17/24 thì phương trình đã cho có nghiệm.
Giải phương trình (2) theo m: