Tìm min của biểu thức :
S = \(5x^2+9y^2-12xy+24x-48y+2080\)
tìm Min : 5x2 + 9y2 - 12xy + 24x - 48y + 2080
\(5x^2+9y^2-12xy+24x-48y+2080=4x^2-2.2x.3y+9y^2+16\left(2x-3y\right)+64+x^2-8x+16+2000=\left(2x-3y\right)^2+2.\left(2x-3y\right).8+8^2+\left(x-4\right)^2+2000=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\)
Ta có \(\left(2x-3y+8\right)^2\ge0\)
\(\left(x-4\right)^2\ge0\)
Nên \(\left(2x-3y+8\right)^2+\left(x-4\right)^2\ge0\Leftrightarrow\left(2x-3y+8\right)^2+\left(x-4\right)^2+2000\ge2000\)
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}2x-3y+8=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\)
Vậy Min của \(5x^2+9y^2-12xy+24x-48y+2080\) là 2000 và xảy ra khi x=4 và y=\(\dfrac{16}{3}\)
tìm giá trị nhỏ nhất của
S=5x2 +9y2-12xy+24x-48y+2080
\(S=4x^2-12xy+9y^2+32x-48y+64+x^2-8x+16+2000\)
\(S=\left(2x-3y\right)^2+16\left(2x-3y\right)+64+\left(x^2+8x+16\right)+2000\)
\(S=\left(2x-3y+8\right)^{^2}+\left(x-4\right)^2+2000\ge2000\)
MinS = 2000 khi x = 4 và y = 16/3
\(S=5x^2+9y^2-12xy+24x-48y+2028\)
\(=\left(9y^2-12xy-48y\right)+5x^2+24x+2028\)
\(=\left[\left(3y\right)^2-2.3y.\left(2x+8\right)+\left(2x+8\right)^2\right]+5x^2+24x+2028-\left(2x+8\right)^2\)\(=\left(3y-2x-8\right)^2+5x^2+24x+2028-4x^2-32x-64\)\(=\left(3y-2x-8\right)^2+\left(x^2-8x+16\right)+1948\)
\(=\left(3y-2x-8\right)^2+\left(x-4\right)^2+1948\ge1948\forall x;y\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=4\\y=\dfrac{16}{3}\end{matrix}\right.\)
tìm giá trị nhỏ nhất của biểu thức A \(=5x^2+9y^2-12xy+24x+48y+81\)
\(A=5x^2+9y^2-12xy+24x-48y+81\)
\(A=4x^2+x^2+9y^2-12xy+32x-48y-8x+16+1+64\)
\(A=(4x^2+9y^2+64-12xy+32x-48y)+\left(x^2-8x+16\right)+1\)
\(A=[\left(2x\right)^2+\left(3y\right)^2+\left(8\right)^2-2.2x.3y-2.3y.8+2.2x.8]+\left(x^2-8x+16\right)+1\)
\(A=\left(2x-3y+8\right)^2\left(x-4\right)^2+1\)
\(Do\) \(\left(2x-3y+8\right)^2\ge0\) \(và\) \(\left(x-4\right)^2\ge0\)
\(\Rightarrow A_{min}=1\)
tim min P=\(5x^2+9y^2-12xy+24x-48y+82\)
\(4x^2+9y^2+64-12xy-48y+32x+x^2-8x+16+2\)
\(=\left(2x-3y+8\right)^2+\left(x-4\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=4 và y=\(\frac{16}{3}\)
Vậy MINP=2 <=> x=4;y=16/3
tìm Min của
K=x2+y2-xy-2y-2x
I=5x2+9y2-12xy=24x-48y+82
5x^2+9y^2-12xy+24x-48y+80=0 tìm x,y?
Tìm Min
A= 5n2+9y2-12xy+24x-48y+82
BT1: Tìm Giá Trị nhỏ nhất của biểu thức:
A) S=5X2+9Y2-12XY+24X-48Y+2014
B) S=X2+Y2-XY+3X+3Y+20
BT2: cho X+2XY+2Y+8
Tìm GTNN của A= X2+4Y2
trước tiên bạn nên đưa về dạng tổng hai bình phương
a) tìm GTLN của E = (x^2 + xy + y^2) / (x^2 - xy + y^2)
( x , y khác 0 )
b) tìm GTNN của S = 5x^2 + 9y^2 - 12xy + 24x - 48y + 2014