2x^3 / 3^2 =48
Tìm x, biết:
4 * 2^x42 - 2x = 480
(2x^2 + 1)*(x-3)=0
48-(15-x)^5=48
(2x2 + 1)(x-3)=0
\(\Rightarrow\orbr{\begin{cases}2x^2+1=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x^2=-1\Rightarrow x^2=-\frac{1}{2}\left(vl\right)\\x=3\end{cases}}\)
Vậy x=3
48-(15-x)5=48
(15-x)5=48-48
(15-x)5=0
=> 15-x =0
x =15-0
x =15
Vậy x=15
2x^3 + 3X^2 - 32x =48
Ta có: 2x3 + 3x2 - 32x =48
<=> 2x3 + 3x2 - 32x - 48 =0
<=> x2(2x+3) - 16(2x+3) =0
<=> (x2-16)(2x+3) =0
<=> (x-4)(x+4)(2x+3) =0
<=> x-4=0 hoặc x+4=0 hoặc 2x+3=0
<=> x=4 hoặc x=-4 hoặc x= \(\dfrac{-3}{2}\)
Vậy phương trình trên có tập nghiệm là S={4;-4;\(\dfrac{-3}{2}\)}
2x3+3x2-32x=48
⇔2x3+3x2-32x-48=0
⇔x2(2x+3)-16(2x+3)=0
⇔(2x+3)(x2-16)=0
⇔(2x+3)(x-4)(x+4)=0
⇔2x+3=0 hoặc x-4=0 hoặc x+4=0
1.2x+3=0⇔2x=-3⇔x=-3/2
2.x-4=0⇔x=4
3.x+4=0⇔x=-4
phương trình có 3 nghiệm:x=-3/2 và x=4 và x=-4
Ta có: \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow x^2\left(2x+3\right)-16\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=4\\x=-4\end{matrix}\right.\)
vậy: \(S=\left\{-\dfrac{3}{2};4;-4\right\}\)
3 × ( 2x - 1 ) ^2 = 48
3 x (2x-1)2=48
=> (2x-1)2=48:3
=>(2x-1)2=16
Mà: 42=16 ; (-4)2=16
=> (2x-1)2 =42 hoặc (2x-1)2= (-4)2
=> 2x-1=4 hoặc 2x-1= -4
=> x= 2,5 hoặc x= -2,5
3 x ( 2x - 1 )2 = 48
=> ( 2x - 1 )2 = 48 : 3
=> ( 2x - 1 )2 = 16
=> ( 2x - 1 )2 = 42
=> 2x - 1 = 4 hoặc 2x - 1 = -4
+) 2x - 1 = 4
=> 2x = 5
=> x = 5/2
+) 2x - 1 = -4
=> 2x = -3
=> x = -3/2
Vậy x = 5/2 hoặc x = -3/2
3 x ( 2x - 1 )2 = 48
=> ( 2x - 1 )2 = 48 : 3
=> ( 2x - 1 )2 = 16
Ta thấy: 16 = 42
=> ( 2x - 1 )2 = 42
=> 2x - 1 = 4
=> 2x = 4 + 1
=> 2x = 5
=> x = 5 : 2
=> x = 2,5
Tính nhanh :
1/ (-48) × 72 + 36 × (-304)
2/ 0,15 × 3700 - 15 × 3 mũ 3 + 150 × (-2)
3/ 3 mũ 2x+1 - 3 nũ 2x
5(7+48:x)=45
5^2x-3-2*5^2=5^2*3
2+x:5=6
10+2x=4^5:4^3
\(5\left(7+48:x\right)=45\)
\(\Leftrightarrow\left(7+48x\right)=9\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=2\)
________________
\(5^2x-3.2.5^2=5^2.3\)
\(\Leftrightarrow5x^2-3-2.5^2=75\)
\(\Leftrightarrow5x^2-3-50=75\)
\(\Leftrightarrow5x^2-3=125\)
\(\Leftrightarrow5x^2=128\)
\(\Leftrightarrow x^2=\frac{128}{5}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{128}{5}\\x=-\frac{128}{5}\end{cases}}\)
___________________
\(2+x:5=0\)
\(\Leftrightarrow x:5=-2\)
\(\Leftrightarrow x=-10\)
\(10+2x=16\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
2x^3+3x^2-32x=48
(x+1)(2x+2)(3x+3)=48
Ta có: (x+1)(2x+2)(3x+3) = 48
=> (x+1).2(x+1).3(x+1) = 48
=> (x+1)3 . 6 = 48
=> (x+1)3 = 8 = 23
=> x + 1 = 2
=> x = 1
Giải pt
1, 9x^2-1 =(3x+1)(4x+1)
2, 2x^3+3x^2-32x=48
3, (2x+5)^2-(x+2)^2=0
4, 2x^3+6x^2=x^2+3x
a) \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\)\(\left(3x-1\right)\left(3x+1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\)\(\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}3x+1=0\\-x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
Vậy...
A)4+96:[(2⁴x2+4):3²
B)15²-2x[81-(3+4)²]
C)50+[30-2x(14-48:4²)]
Giúp e với ạ
1) x^2 + x - 6
2) x^2 - x - 6
3) x^2 + 2x - 48
4) x^2 - 2x -48
5) x^2 + x- 42
6) x^2 - x-42
1) \(x^2+x-6=x\left(x-2\right)+3\left(x-2\right)=\left(x+3\right)\left(x-2\right)\)
2) \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)
3) \(x^2+2x-48=\left(x-6\right)\left(x+8\right)\)
4) \(x^2-2x-48=\left(x-8\right)\left(x+6\right)\)
5) \(x^2+x-42=\left(x-6\right)\left(x+7\right)\)
6) \(x^2-x-42=\left(x-7\right)\left(x+6\right).\)
1) \(x^2+x-6\)
\(=x^2-2x+3x-6\)
\(=\left(x^2-2x\right)+\left(3x-6\right)\)
\(=x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(x+3\right)\)
2) \(x^2-x-6\)
\(=x^2+2x-3x-6\)
\(=\left(x^2+2x\right)-\left(3x+6\right)\)
\(=x\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(x-3\right)\)
3) \(x^2+2x-48\)
\(=x^2+8x-6x-48\)
\(=\left(x^2+8x\right)-\left(6x+48\right)\)
\(=x\left(x+8\right)-6\left(x+8\right)\)
\(=\left(x+8\right)\left(x-6\right)\)
4) \(x^2-2x-48\)
\(=x^2-8x+6x-48\)
\(=\left(x^2-8x\right)+\left(6x-48\right)\)
\(=x\left(x-8\right)+6\left(x-8\right)\)
\(=\left(x-8\right)\left(x+6\right)\)
5) \(x^2+x-42\)
\(=x^2+7x-6x-42\)
\(=\left(x^2+7x\right)-\left(6x+42\right)\)
\(=x\left(x+7\right)-6\left(x+7\right)\)
\(=\left(x+7\right)\left(x-6\right)\)
6) \(x^2-x-42\)
\(=x^2-7x+6x-42\)
\(=\left(x^2-7x\right)+\left(6x-42\right)\)
\(=x\left(x-7\right)+6\left(x-7\right)\)
\(=\left(x-7\right)\left(x+6\right)\)