Ta có: 2x3 + 3x2 - 32x =48
<=> 2x3 + 3x2 - 32x - 48 =0
<=> x2(2x+3) - 16(2x+3) =0
<=> (x2-16)(2x+3) =0
<=> (x-4)(x+4)(2x+3) =0
<=> x-4=0 hoặc x+4=0 hoặc 2x+3=0
<=> x=4 hoặc x=-4 hoặc x= \(\dfrac{-3}{2}\)
Vậy phương trình trên có tập nghiệm là S={4;-4;\(\dfrac{-3}{2}\)}
2x3+3x2-32x=48
⇔2x3+3x2-32x-48=0
⇔x2(2x+3)-16(2x+3)=0
⇔(2x+3)(x2-16)=0
⇔(2x+3)(x-4)(x+4)=0
⇔2x+3=0 hoặc x-4=0 hoặc x+4=0
1.2x+3=0⇔2x=-3⇔x=-3/2
2.x-4=0⇔x=4
3.x+4=0⇔x=-4
phương trình có 3 nghiệm:x=-3/2 và x=4 và x=-4
Ta có: \(2x^3+3x^2-32x=48\)
\(\Leftrightarrow2x^3+3x^2-32x-48=0\)
\(\Leftrightarrow x^2\left(2x+3\right)-16\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(x^2-16\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=4\\x=-4\end{matrix}\right.\)
vậy: \(S=\left\{-\dfrac{3}{2};4;-4\right\}\)