Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Totoro Totori
Xem chi tiết
Totoro Totori
Xem chi tiết
ngonhuminh
25 tháng 12 2016 lúc 10:17

Tử mẫu không rõ rằng => lạc đề

Nguyễn Thái Quân
Xem chi tiết
Trung Nguyen
15 tháng 10 2020 lúc 22:17

a)\(\log_{\frac{2}{x}}x^2-14\log_{16x}x^3+40\log_{4x}\sqrt{x}=0\)ĐKXĐ: x>0

\(\Leftrightarrow2\log_{\frac{2}{x}}x-42\log_{16x}+20\log_{4x}\sqrt{x}=0\)

\(\Leftrightarrow\frac{2}{\log_x\frac{2}{x}}-\frac{42}{\log_x16x}+\frac{20}{\log_x4x}=0\)

\(\Leftrightarrow\frac{2}{\log_x2-1}-\frac{42}{4\log_x2+1}+\frac{20}{2\log_x+1}=0\)

Đặt \(\log_x2=a\left(a\in R\right)\)

Thay vào pt:\(\frac{2}{a-1}-\frac{42}{4a+1}+\frac{20}{2a+1}=0\)

\(\Leftrightarrow2a^2-a+4=0\)(pt này vô nghiệm)

Vậy pt đã cho vô nghiệm

Khách vãng lai đã xóa
Trung Nguyen
15 tháng 10 2020 lúc 22:24

cái đó phải là \(-42\log_{16x}x\) nhé bạn

Khách vãng lai đã xóa
Trung Nguyen
15 tháng 10 2020 lúc 23:41

\(\log_{\frac{x}{2}}4x^2+2\log_{\frac{x^3}{8}}2x+\log_{2x}\frac{x^4}{4}=-\frac{14}{3}\)(ĐKXĐ:x>0)

\(\Leftrightarrow2\log_{\frac{x}{2}}2x+\frac{2}{3}\log_{\frac{x}{2}}2x+2\log_{2x}\frac{x^2}{2}=-\frac{14}{3}\)

\(\Leftrightarrow\frac{8}{3}\log_{\frac{x}{2}}2x+2\log_{2x}\frac{x^2}{2}=-\frac{14}{3}\)

Xét \(\log_{2x}\frac{x^2}{2}=\log_{2x}\frac{x^2}{4}\cdot2=2\log_{2x}\frac{x}{2}+\log_{2x}2=\frac{2}{\log_{\frac{x}{2}}2x}+\frac{1}{1+\log_2x}\)

Thay vào phương trình ta được:

\(\frac{8}{3}\log_{\frac{x}{2}}2x+2\left(\frac{2}{\log_{\frac{x}{2}}2x}+\frac{1}{1+\log_2x}\right)=-\frac{14}{3}\)

Đặt \(\log_2x=a\left(a\in R\right)\)

Xét

\(\log_{\frac{x}{2}}2x=\log_{\frac{x}{2}}2+\log_{\frac{x}{2}}x=\frac{1}{\log_2\frac{x}{2}}+\frac{1}{\log_x\frac{x}{2}}=\frac{1}{\log_2x-1}+\frac{1}{1-\log_x2}=\frac{1}{a-1}+\frac{1}{1-\frac{1}{a}}=\frac{a+1}{a-1}\)

Thay vào pt ta được:

\(\frac{8}{3}\cdot\frac{a+1}{a-1}+2\left(2\cdot\frac{a-1}{a+1}+\frac{1}{a+1}\right)=-\frac{14}{3}\)

Giải ra ta được a=0 hoặc a=-23/17

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2^{-\frac{23}{17}}\end{matrix}\right.\)

LIFE AND SHARE
Xem chi tiết
khanhhuyen6a5
Xem chi tiết
nguyen thi vang
12 tháng 7 2018 lúc 19:11

Tìm GTNN của biểu thức :

\(x^2+2x+4\)

Đặt A = \(x^2+2x+4\)

\(\Leftrightarrow A=\left(x^2+2.x.1+1\right)+3\)

\(\Leftrightarrow A=\left(x+1\right)^2+3\)

Ta luôn có : \(\left(x+1\right)^2\ge0\forall x\)

Suy ra : \(\left(x+1\right)^2+3\ge3\forall x\)

Hay A\(\ge3\) với mọi x

Dấu "=" xảy ra khi \(x+1=0\Rightarrow x=-1\)

Nên : \(A_{min}=3khix=-1\)

Nguyễn Minh Phương
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết
Hung nguyen
18 tháng 1 2017 lúc 11:19

a/ \(A=\frac{2x^3-6x^2+x-8}{x-3}=2x^2+1-\frac{5}{x-3}\)

Từ đây ta thấy A nguyên khi x - 3 là ước nguyên của 5 hay

\(\left(x-3\right)=\left(-5,-1,1,5\right)\)

\(\Rightarrow x=\left(-2,2,4,8\right)\)

b/ \(B=\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}=\frac{\left(x^2+4\right)\left(x-2\right)\left(x+2\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)

\(=\frac{x+2}{x-2}=1+\frac{4}{x-2}\)

Để B nguyên thì x - 2 phải là ước nguyên của 4 hay

\(\left(x-2\right)=\left(-4,-2,-1,1,2,4\right)\)

\(\Rightarrow x=\left(-2,0,1,3,4,6\right)\)

Kaijo
Xem chi tiết
nguyenthiluyen
Xem chi tiết