19+19+19+19+20+20+4-100
cho mn hỏi
so sánh \(\frac{19^{19}-5}{19^{20}+4}vs\frac{19^{20}-5}{19^{21}+4}\)
Đặt \(A=\frac{19^{19}-5}{19^{20}+4}\)
\(\Rightarrow19A=\frac{19^{20}-95}{19^{20}+4}=\frac{19^{20}+4-99}{19^{20}+4}=1-\frac{99}{19^{20}+4}\)
\(B=\frac{19^{20}-5}{19^{21}+4}\)
\(\Rightarrow19B=1-\frac{99}{19^{21}+4}\) ( chỗ này bn lm giống như mk ở trên nha! )
\(\Rightarrow\frac{99}{19^{20}+4}>\frac{99}{19^{21}+4}\)
\(\Rightarrow1-\frac{99}{19^{20}+4}< 1-\frac{99}{19^{21}+4}\)
\(\Rightarrow19A< 19B\)
=> A < B
Số proton, neutron và electron của 3919K lần lượt là
A. 19, 20, 39
B. 20, 19, 39
C. 19, 20, 19
D. 19, 19, 20
P=E=Z=19
N=A - Z= 39 - 19 = 20
=> Chọn C
so sanh C=19^20+5/19^20-8 vaD=19^21+6/19^21-7
mk tính đơn giản lắm chỉ cần tính hiệu của C va D thì ra hết..:))
so sánh
A=\(\frac{19^{20}+5}{19^{20}-8}\)
B=\(\frac{19^{20}+6}{19^{20}-7}\)
Ta có: \(A=\frac {19^{20}+5}{19^{20}-8}=\frac {19^{20}-8+13}{19^{20}-8}=1+\frac {13}{19^{20}-8}\)
\(B=\frac {19^{20}+6}{19^{20}-7}=\frac {19^{20}-7+13}{19^{20}-7}=1+\frac {13}{19^{20}-7}\)
Vì \(19^{20}-8<19^{20}-7\) nên \(\frac {13}{19^{20}-8}>\frac {13}{19^{20}-7}\)
\(\Rightarrow\)\(1+\frac{13}{19^{20}-8}>1+\frac{13}{19^{20}-7}\) Hay \(A>B\)
Vậy A>B
ta có A = \(\frac{19^{20}+5}{19^{20}-8}=\frac{19^{20}-8+13}{19^{20}-8}=1+\frac{13}{19^{20}-8}\)
và B = \(\frac{19^{20}+6}{19^{20}-7}=\frac{19^{20}-7+13}{19^{20}-7}=1+\frac{13}{19^{20}-7}\)
vì \(\frac{13}{19^{20}-8}>\frac{13}{19^{20}-7}\)\(\Rightarrow1+\frac{13}{19^{20}-8}>1+\frac{13}{19^{20}-7}\)\(\Rightarrow A>B\)
[ 19^20 +19^19 ] chia 19^18
Bài làm :
\(\left(19^{20}+19^{19}\right):19^{18}\)
\(=19^{20}:19^{18}+19^{19}:19^{18}\)
\(=19^2+19\)
\(=361+19\)
\(=380\)
Học tốt
\(\left(19^{20}+19^{19}\right)\div19^{18}\)
\(=19^2+19\)
\(=361+19\)
\(=380\)
CM 19/20!+19/21!+19/22!+......+19/5000!<1/19!
Tính :
( 19 mũ 21 + 19 mũ 22 + 19 mũ 23 ) : ( 19 mũ 20 + 19 mũ 21 + 19 mũ 22 )
\(\left(19^{21}+19^{22}+19^{23}\right):\left(19^{20}+19^{21}+19^{22}\right)\)
\(=19^{21}.\left(1+19+19^2\right):19^{20}:\left(1+19+19^2\right)=19\)
So sánh 1/2 + 1/3 + 1/4 + ... + 1/18 + 1/19 + 1/20 và 19/20
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\left(19SH\right)\)
\(\Rightarrow\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+..+\frac{1}{20}>\frac{19}{20}\)
Vậy ................
Đặt \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}\) ta có :
\(A>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
Do có \(20-2+1=19\) phân số \(\frac{1}{20}\) nên :
\(A>19.\frac{1}{20}=\frac{19}{20}\)
Vậy \(A>\frac{19}{20}\)
Chúc bạn học tốt ~
Tính
1/2+1/3+1/4+...1/19+1/20:19/1+18/2+17/3+...+2/18+1/19
\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{\dfrac{19}{1}+\dfrac{18}{2}+\dfrac{17}{3}+....+\dfrac{1}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}{1+\left(\dfrac{18}{2}+1\right)+\left(\dfrac{17}{3}+1\right)+\left(\dfrac{1}{19}+1\right)}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{1+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{20}{19}}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}{20.\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}\)
\(=\dfrac{1}{20}\)