Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hà Quang Hải
Xem chi tiết
Trần Tuấn Hoàng
4 tháng 3 2022 lúc 11:01

\(M=\dfrac{4a}{a^2+4}=\dfrac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\dfrac{\left(a-2\right)^2}{a^2+4}\)

-Vì \(\left(a-2\right)^2\ge0;a^2+4>0\) nên \(\dfrac{\left(a-2\right)^2}{a^2+4}\ge0\)

\(\Rightarrow M=1-\dfrac{\left(a-2\right)^2}{a^2+4}\le1\)

\(M_{max}=1\Leftrightarrow\dfrac{\left(a-2\right)^2}{a^2+4}=0\Leftrightarrow\left(a-2\right)^2=0\Leftrightarrow a-2=0\Leftrightarrow a=2\).

Phạm Thị Duyên
Xem chi tiết
Nguyễn Thị BÍch Hậu
9 tháng 6 2015 lúc 19:16

không hiểu thì hỏi, thấy đúng thì đúng nha. làm bài này mệt thấy mồ

Nguyễn Thị BÍch Hậu
9 tháng 6 2015 lúc 19:16

hoành độ giao điểm A là nghiệm của phương trình:

(3m+2)x+5=-x-1\(\Leftrightarrow3mx+2x+5+x+1=0\Leftrightarrow\left(3m+3\right)x+6=0\Leftrightarrow3\left(m+1\right)x+6=0\Leftrightarrow3\left[\left(m+1\right)x+2\right]=0\)\(\Rightarrow\left(m+1\right)x+2=0\Leftrightarrow x=-\frac{2}{m+1}\); y=-x-1 => \(y=\frac{2}{m+1}+1=\frac{m+3}{m+1}\)

\(y^2+2x-3=\left(\frac{m+3}{m+1}\right)^2-\frac{4}{m+1}-3=\frac{m^2+6m+9-4m-4}{\left(m+1\right)^2}-3=\frac{m^2+2m+5}{\left(m+1\right)^2}-3\)

\(=\frac{\left(m^2+2m+1\right)+4}{\left(m+1\right)^2}-3=\frac{\left(m+1\right)^2+4}{\left(m+1\right)^2}-3=1+\frac{4}{\left(m+1\right)^2}-3=\frac{4}{\left(m+1\right)^2}-2\ge\frac{4}{1}-2=2\)

=> Min =2 <=> m=0

Nguyễn Tâm Anh
20 tháng 5 2020 lúc 18:29

Scsdcscsdvvzssdvvds

Khách vãng lai đã xóa
Mờ Lem
Xem chi tiết
Kiệt Nguyễn
27 tháng 9 2020 lúc 15:43

a) \(ĐK:a\ne1;a\ne0\)

\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

b) Ta có: \(a^2+4\ge4a\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)

Khi đó \(\frac{4a}{a^2+4}\le1\)

Vậy MaxA = 1 khi x = 2

Khách vãng lai đã xóa
Mờ Lem
27 tháng 9 2020 lúc 16:05

•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)

Mong Idol pro giải thích hộ em chỗ này :((

Khách vãng lai đã xóa
Mờ Lem
27 tháng 9 2020 lúc 16:13

À dạ thôi oke, em hiểu rồi((: 

Khách vãng lai đã xóa
Ái Kiều
Xem chi tiết
25.Lê Ngọc Phan-8A
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 5 2022 lúc 12:26

1:

ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)

 \(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)

\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)

 

Nguyễn Thị Linh
Xem chi tiết
Trang
Xem chi tiết
Nguyễn Văn Vinh
6 tháng 11 2016 lúc 20:50

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

Funny Suuu
Xem chi tiết
Minh Nguyen
22 tháng 3 2020 lúc 16:02

a) \(ĐKXĐ:\hept{\begin{cases}a\ne1\\a\ne0\end{cases}}\)

\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right)\div\frac{a^3+4a}{4a^2}\)

\(\Leftrightarrow M=\left(\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right):\frac{a^2+4}{4a}\)

\(\Leftrightarrow M=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-3a^2+3a-1-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(\Leftrightarrow M=\frac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a^2}{a^2+4}\)

\(\Leftrightarrow M=\frac{4a^2}{a^2+4}\)

b) Ta có : \(\frac{4a^2}{a^2+4}=\frac{4\left(a^2+4\right)-16}{a^2+4}\)

\(=4-\frac{16}{a^2+4}\)

Để M đạt giá trị lớn nhất 

\(\Leftrightarrow\frac{16}{a^2+4}\)min

\(\Leftrightarrow a^2+4\)max

\(\Leftrightarrow a\)max

Vậy để M đạt giá trị lớn nhất thì a phải đạ giá trị lớn nhất.

Khách vãng lai đã xóa
Mai Quỳnh
Xem chi tiết