Cho tam giác ABC có AB = AC. AD là tia phân giác của góc A (D thuộc BC). Chứng minh:
a, tam giác ABD = tam giác ACD
b, DB = DC
Cho tam giác ABC có AB = AC Vẽ tia phân giác của góc Bac cắt BC tại D Chứng minh rằng :
a) tam giác ABD bằng tam giác ACD
b)AD vuông góc với BD
Bài 3 (3 điểm). Cho tam giác ABC cân tại A có đường phân giác AD (D thuộc BC).
a) Chứng minh tam giác ABD = tam giác ACD
b) Kẻ DE vuông góc AB (E thuộc AB), DF vuông góc AC (F thuộc AC). Chứng minh DE = DF
c) Chứng minh EF // BC;
d) Gọi điểm M là trung điểm của đoạn thẳng AF. Đường thẳng AD cắt đường thẳng EM và đường thẳng EF lần lượt tại H và O. Tim số đo góc BAC để OD =2.HO
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
Cho tam giác ABC có AB=AC. Gọi D là trung điểm cạnh BC, qua A vẽ đường thẳng d song song với BC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD
b, AD là tia phân giác của góc BAC
c, AD vuông góc với đường thằng d
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là tia phân giác của góc BAC
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
=>AD⊥BC
mà d//BC
nên AD⊥d
a) Xét ΔΔABD và ΔΔACD có:
AB = AC (gt)
AD: cạnh chung
BD = CD (D là trung điểm của BC)
⇒Δ⇒ΔABD = ΔΔACD (c.c.c)
b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒\(\widehat{BAD}\)=\(\widehat{CAD}\) (2gocs tương ứng )
⇒ AD là tia phân giác của \(\widehat{BAC}\)
c) Ta có: ΔΔABD = ΔΔACD (theo ý a)
⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )
mà \(\widehat{ADB}\) + \(\widehat{ADC}\)=18001800( 2 góc kề bù )
⇒\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900
⇒ AD ⊥ BC
Lại có: d // BC (gt) ⇒ AD ⊥ d
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc A (D thuộc BC). Chứng minh DC-DB<AC-AB
cho tam giác ABC có AB=AC*AD là tia phân giác của góc A{D THUỘC BC .chung minh
a}goc ABD=GÓC ACD
B]DB=DC
có pải để như z hk : cho tam giác ABC có AB= AC; AD là p/g của g.A .........................
Cho tam giác ABC có AB=AC.AD là tia phân giác của góc A(D thuộc BC).Chứng minh:
a,tam giác ABD=tam giác ACD
b,DB=DC
a,Xét 2 tam giác ABD và tam giác ADC có :
A1=A2 (gt)
AD là cạnh chung
AB = AC ( gt )
Suy ra tam giác ABD = tam giác ADC ( c.g.c)
b, Ta có : tam giác ABD = tam giác ADC ( câu a )
Suy ra BD = CD ( hai cạnh tương ứng )
(Bạn tự vẽ hình)
a) Xét tam giác ABD và tam giác ACD có:
Góc A1 = góc A2 (gt)
AD: chung
AB = AC (gt)
=> Tam giác ABD = tam giác ACD (c.g.c)
=> DB = DC (hai cạnh tương ứng) (câu b luôn)
Cho tam giác ABC có AB=AC, vẽ tia phân giác của góc BAC cắt BC tại D. Chứng minh rằng:
a,Tam giác ABD=tam giác ACD
b,AD vuông góc với BD
Giups mình với
a: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
b: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
Cho Tam giác abc có ab=ac gọi d là trung điểm cạnh bc.Kẻ de vuông cóc với ab;df vuông góc với ac.Chứng minh
a)Chứng minh tam giác abd=tam giác acd
b)chứng minh ad là tia phân giác của góc bac
c)chứng minh tam giác aed=tam giác afd
d)chứng minh tam giác deb=tam giác dfc
a: Xét ΔABD và ΔACD co
AB=AC
BD=CD
AD chung
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>góc BAD=góc CAD
=>AD là phân giác của góc BAC
c: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
d: Xét ΔDEB vuông tại E và ΔDFC vuông tại F có
DB=DC
DE=DF
=>ΔDEB=ΔDFC