a) |x + 2| - 6x = 1
A= 6x/5x-20 - x/x^2-8x+16
A= 4/x+2 + 3/x-2 + 5x+2/4-x^2 - x^2-2x+4/x^3+8
A= ( 6x+1/x^2-6x) + 6x-1/x^2+6x) . x^2-36/x^2+1
A= ( x/x-1 - x+1/x) : ( x/x+1 - x-1/x)
oke nhé , giúp minh với
\(A=\dfrac{6x}{5x-20}-\dfrac{x}{x^2-8x+16}\)
\(ĐKXĐ:x\ne\pm4\)
\(\Leftrightarrow A=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)
\(\Leftrightarrow A=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)
\(\Leftrightarrow\dfrac{x\left(6x-29\right)}{5\left(x-4\right)^2}\)
\(A=\left(\dfrac{x}{x-1}-\dfrac{x+1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)
\(ĐKXĐ:x\ne0;x\ne\pm1\)
\(\Leftrightarrow A=\left(\dfrac{x^2}{x\left(x-1\right)}-\dfrac{x^2-1}{x\left(x-1\right)}\right):\left(\dfrac{x^2}{x\left(x+1\right)}-\dfrac{x^2-1}{x\left(x+1\right)}\right)\)
\(\Leftrightarrow A=\dfrac{x\left(x+1\right)}{x\left(x-1\right)}\)
\(\Leftrightarrow A=\dfrac{x+1}{x-1}\)
\(A=\left[\dfrac{6x+1}{x^2-6x}+\dfrac{6x-1}{x^2+6x}\right].\dfrac{x^2-36}{x^2+1}\)
\(ĐKXĐ:x\ne0;x\ne\pm6\)
\(\Leftrightarrow A=\left[\dfrac{6x+1}{x\left(x-6\right)}+\dfrac{6x-1}{x\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(\Leftrightarrow A=\left[\dfrac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(\Leftrightarrow A=\left[\dfrac{6x^2+37x+6+6x^2-37x+6}{x\left(x-6\right)\left(x+6\right)}\right].\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{12\left(x^2+1\right)}{x\left(x-6\right)\left(x+6\right)}.\dfrac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(\Leftrightarrow A=\dfrac{12}{x}\)
A= 6x/5x-20 - x/x^2-8x+16
A= 4/x+2 + 3/x-2 + 5x+2/4-x^2 - x^2-2x+4/x^3+8
A= ( 6x+1/x^2-6x) + 6x-1/x^2+6x) . x^2-36/x^2+1
A= ( x/x-1 - x+1/x) : ( x/x+1 - x-1/x)
oke nhé , giúp minh với
a: \(=\dfrac{6x}{5\left(x-4\right)}-\dfrac{x}{\left(x-4\right)^2}\)
\(=\dfrac{6x^2-24x-5x}{5\left(x-4\right)^2}=\dfrac{6x^2-29x}{5\left(x-4\right)^2}\)
b: \(=\dfrac{4}{x+2}+\dfrac{3}{x-2}-\dfrac{5x+2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2-2x+4}{x^3+8}\)
\(=\dfrac{4x-8+3x+6-5x-2}{\left(x+2\right)\left(x-2\right)}-\dfrac{1}{x+2}\)
\(=\dfrac{2x-2-x+2}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{x}{\left(x+2\right)\left(x-2\right)}\)
c: \(\left(\dfrac{x}{x-1}-\dfrac{x+1}{x}\right):\left(\dfrac{x}{x+1}-\dfrac{x-1}{x}\right)\)
\(=\dfrac{x^2-x^2+1}{x\left(x-1\right)}:\dfrac{x^2-x^2+1}{x\left(x+1\right)}\)
\(=\dfrac{x\left(x+1\right)}{x\left(x-1\right)}=\dfrac{x+1}{x-1}\)
CÂU 3:
a, tính x/x+1 -2x+1/x+1
b,2/x^2+x +2/x+1
c,A=3x-1/6x+2 -3x+1/2-6x -6x/9x^2-1
d,tính x để A=2
giúp mk với ,mai mk thi r ạ
a: \(=\dfrac{x-2x-1}{x+1}=\dfrac{-\left(x+1\right)}{x+1}=-1\)
b: \(=\dfrac{2+2x}{x\left(x+1\right)}=\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{2}{x}\)
c: \(=\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)
\(=\dfrac{2\left(3x-1\right)^2}{2\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)
A=\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\frac{x^2-36}{x^2+1}\)
a,Tìm điều kiện xác định
b,Rút gọn A
Lời giải:
a) ĐKXĐ: \(\left\{\begin{matrix} x^2-6x\neq 0\\ x^2+6x\neq 0\\ x^2+1\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0; x\neq \pm 6\)
b)
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right).\frac{x^2-36}{x^2+1}=\frac{(6x+1)(x+6)+(6x-1)(x-6)}{x(x-6)(x+6)}.\frac{x^2-36}{x^2+1}\)
\(=\frac{6x^2+37x+6+6x^2-37x+6}{x(x-6)(x+6)}.\frac{(x-6)(x+6)}{x^2+1}=\frac{12(x^2+1)}{x(x-6)(x+6)}.\frac{(x-6)(x+6)}{x^2+1}=\frac{12}{x}\)
thu gọn
a) 5y.(2y-1)-(3y+2).(3-3y)
b) (6x+1)^2 -2(6x+1).(6x-1)+(6x-1)^2
c) (2x+3)-2(2x+3)(x-2)+(x-2)^2
`a)5y(2y-1)-(3y+2)(3-3y)`
`=10y^2-5y+(3y+2)(3y-3)`
`=10y^2-5y+9y^2-9y+6y-6`
`=19y^2-8y-6`
`b)(6x+1)^2-2(6x+1)(6x-1)+(6x-1)^2`
`=(6x+1-6x+1)^2`
`=2^2=4`
`c)(2x+3)^2-2(2x+3)(x-20+(x-2)^2`
`=(2x+3-x+2)^2`
`=(x+5)^2`
`=x^2+10x+25`
Bài 1: Tính:
a) x2(x-2x3); b) (x2+1)(5-x); c) (x-2)(x2+3x-4); d) (x-2)(x-x2+4); e) (x2-1)(x2+2x); f) (2x-1)(3x+2)(3-x)
Bài 2: Tính:
a) (x-2y)2; b) (2x2+3)3; c) (x-2)(x2+2x+4); d) (2x-1)3
Bài 3: Rút gọn biểu thức:
a) (6x+1)2+(6x-1)2-2(1+6x)(6x-1); b) 3(22+1)(24+1)(28+1)(216+1); c) x(2x2-3)-x2(5x+1)+x2; d) 3x(x-2)-5x(1-x)-8(x2-3)
Bài 4: Tính nhanh:
a) 1012; b) 97.103; c) 772+232+77.46; d) 1052-52; e) A= (x-y)(x2+xy+y2)+2y3 tại x= \(\dfrac{2}{3}\) và y= \(\dfrac{1}{3}\)
Bạn chú ý đăng lẻ câu hỏi! 1/
a/ \(=x^3-2x^5\)
b/\(=5x^2+5-x^3-x\)
c/ \(=x^3+3x^2-4x-2x^2-6x+8=x^3=x^2-10x+8\)
d/ \(=x^2-x^3+4x-2x+2x^2-8=3x^2-x^3+2x-8\)
e/ \(=x^4-x^2+2x^3-2x\)
f/ \(=\left(6x^2+x-2\right)\left(3-x\right)=17x^2+5x-6-6x^3\)
A=x+6x^2+7x^2-6x+1
A=(x^2)^2+2x^2.3x+9x^2-1x^2-6x+7
A=(x^2+3x)^2-2.(x^2+3x).1+1
A=(x^2+3x)^2>=0 với mọi x khi x^2=3x-1=0
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)
Rút gọn nha các cậu
\(A=\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\times\frac{x^2-36}{12x^2+12}\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\times\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(A=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}\times\frac{1}{12\left(x^2+1\right)}\)
\(A=\frac{12\left(x^2+1\right)}{x}\times\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
Tìm x, biết:
a) (6x+1)2 + (6x-1)2 - 2(1+6x)(6x-1)
b) x(2x2-3) - x2(5x+1) + x2
a ) ( 6x + 1 )2 + ( 6x - 1 )2 - 2 . ( 6x + 1 )( 6x - 1 )
= ( 6x + 1 )2 - 2 . ( 6x + 1 )( 6x - 1 ) + ( 6x - 1 )2
= ( 6x + 1 - 6x + 1 )2
= 22 = 4
b ) x . ( 2x2 - 3 ) - x2 . ( 5x + 1 ) + x2
= 2x3 - 3x - 5x3 - x2 + x2
= ( 2x3 - 5x3 ) - 3x - ( x2 - x2 )
= - 3x3 - 3x
= - 3x . ( x2 + 1)
bài 3
a. (6x+1)^2+(6x-1)^2-2(1+6x)(6x-1)
b. x(2x^2-3)-x^2(5x+1)+x^2
c. 3x(x-2)-5x(1-x)-8(x^2-3)
d. 3(2^2+1)(2^4+1)(2^8+1)(2^16+1)
a) Ta có: \(\left(6x+1\right)^2+\left(6x-1\right)^2-2\left(1+6x\right)\left(6x-1\right)\)
\(=\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)
\(=\left(6x+1-6x+1\right)^2=2^2=4\)
b) Ta có: \(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=-3x-3x^3\)
c) Ta có: \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=24-11x\)
d) Ta có: \(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)