Tim GTNN cua A=\(\frac{7}{x^2-x+2}\)
tim gtnn va gtln cua
a)\(\frac{x^2+1}{x^2-x+1}\)
b)\(\frac{5y^2-3xy}{x^2-3xy+4y^2}\)
c)Cho \(x^2+2xy-x^2y-y+7=0\) .Tim gtnn va gtln cua \(x^2+6xy+12y^2\)
tim gtnn cua A=7 / 10x -x^2 + 3
A= 7/ - (x2 - 10x +25) +28
A=7/ - (x - 5)2 +28
xét - (x - 5)2 +28 <= 28 dấu = xảy ra khi x - 5 = 0 <=> x=5 . suy ra MIN A = 7/28 = 1/4
Vậy gtnn của A = 1/4 khi x=5
Tim GTNN cua
\(A=x^2-\frac{1}{3}x+\frac{1}{27x}+2016...\)
Ta có
\(A=x^2-\frac{x}{3}+\frac{1}{27x}+2016\)
\(=\left(x^2-\frac{2x}{3}+\frac{1}{9}\right)+\left(\frac{x}{3}-\frac{2}{9}+\frac{1}{27x}\right)+2016-\frac{1}{9}+\frac{2}{9}\)
\(=\left(x-\frac{1}{3}\right)^2+\left(\frac{\sqrt{x}}{\sqrt{3}}-\frac{1}{3\sqrt{3x}}\right)^2+\frac{18145}{9}\)
\(\ge\frac{18145}{9}\)
Dấu = xảy ra khi \(x=\frac{1}{3}\)
PS: Lần sau đừng chép đề thiếu nữa nha bạn :(
\(min_A=\frac{1469648}{729}\Leftrightarrow x=\frac{4}{27}\)
1, tim GTLN cua A=13/(x+5)^2+7
2, tim GTNN cua B=|x+2017|+(y+3)^2+2017
3, cho a-1/2=b+3/4=c-5/6 va 5a-3b-4c=46. Tim a,b,c.
cho x>=2.Tim gtnn cua P=\(2x+\frac{3}{x}+\frac{4}{x^2}\)
Tim GTNN cua P = \(\frac{-2x+2019+x^2}{x^2}\)
Lời giải:
ĐK: $x\neq 0$
\(P=\frac{-2x+2019+x^2}{x^2}(1)\) \(\Rightarrow Px^2=-2x+2019+x^2\)
\(\Leftrightarrow x^2(P-1)+2x-2019=0(*)\)
Vì PT $(1)$ tồn tại nên PT $(*)$ luôn có nghiệm
$\Rightarrow \Delta'_{(*)}=1-(P-1)(-2019)\geq 0$
$\Leftrightarrow P\geq \frac{2018}{2019}$
Vậy $P_{\min}=\frac{2018}{2019}$
tim gtnn cua A=x^2-6x+|y-3|+7
khó quá
mik không làm đc
bạn thừ nhờ soyeon_tiểu bàng giải giúp thử xem, chắc chắn bạn ấy sẽ biết
/y-3/>=0
A = (x-3)2 +/y-3/ +7 -9
GTNN A = -2
đúng 100%
tim GTNN cua: 3*x^2+y^2-2*x*y-7
đặt A=3x2+y2-2xy-7=(x2-2xy+y2)+2x2-7=(x-y)2+2x2-7.ta có (x-y)2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x bằng y) và 2x2 cũng lớn hơn hoặc bằng 0(bằng 0 khi x=0) nên (x-y)2+2x2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x=y=0) suy ra (x-y)2+2x2-7 luôn lớn hơn hoặc bằng -7(đẳng thức xảy ra khi x=y=0) nên GTNN của A là -7.
Vậy GTNN của A là -7.
A=X2-3X+\(\frac{4}{X}\) voi X>0, tim GTNN cua A