tính đúng sai mệnh đề phủ định
∃x ∈ ℝ: 2x²-3x=0
Cho mênh đề “ ∀ x ∈ ℝ , x 2 + x ≥ − 1 4 ”. Lập mệnh đề phủ định của mệnh đề A và xét tính đúng sai của nó
A. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề đúng
B. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≤ − 1 4 " Đây là mệnh đề đúng
C. A ¯ : " ∃ x ∈ ℝ , x 2 + x < − 1 4 " Đây là mệnh đề đúng
D. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề sai
Xét mệnh đề P: " ∃ x ∈ ℝ : 3 x + 1 < 0 " Mệnh đề phủ định P ¯ của mệnh đề P là
A . " ∀ x ∈ ℝ : 3 x + 1 ≤ 0 "
B . " ∃ x ∈ ℝ : 3 x + 1 > 0 "
C . " ∀ x ∈ ℝ : 3 x + 1 ≥ 0 "
D . " ∀ x ∈ ℝ : 3 x + 1 ≤ 0 "
Tìm mệnh đề phủ định của mệnh đề P : " ∀ x ∈ ℝ , 2 x − 9 = 0 "
A. P ¯ : " ∀ x ∈ ℝ , 2 x − 9 < 0 "
B. P ¯ : " ∀ x ∈ ℝ , 2 x − 9 ≠ 0 "
C. P ¯ : " ∃ x ∈ ℝ , 2 x − 9 ≥ 0 "
D. P ¯ : " ∃ x ∈ ℝ , 2 x − 9 ≠ 0 "
Đáp án D
Mệnh đề phủ định của mệnh đề P : " ∀ x ∈ ℝ , 2 x − 9 = 0 " là P ¯ : " ∃ x ∈ ℝ , 2 x − 9 ≠ 0 "
tìm mệnh đề phủ định và xét tính đúng sai của mệnh đề
∀ϵR: x2 -3x+5 ≠0
Lời giải:
Mệnh đề gốc: Đúng, do $x^2-3x+5=(x-1,5)^2+2,75\geq 2,75>0$ với mọi $x\in\mathbb{R}$
$\Rightarrow x^2-3x+5\neq 0, \forall x\in\mathbb{R}$
Mệnh đề phủ định: $\exists x\in\mathbb{R}, x^2-3x+5=0$
Xét mệnh đề P : ∃ x ∈ ℝ : 2 x − 3 < 0 " . Mệnh đề phủ định P ¯ của mệnh đề P là:
A. " ∀ x ∈ R ,2 x − 3 < 0 "
B. " ∃ x ∈ R ,2 x − 3 > 0 "
C. " ∀ x ∈ R ,2 x − 3 ≥ 0 "
D. " ∀ x ∈ R ,2 x − 3 ≤ 0 "
Chú ý: Mệnh đề phủ định của mệnh đề " ∃ x ∈ X , P ( x ) " là " ∀ x ∈ X , P ( x ) ¯ " .
Đáp án C.
Phát biểu mệnh đề phủ định của các mệnh đề sau. Xét tính đúng sai của mỗi mệnh đề và mệnh đề phủ định của nó.
a) Paris là thủ đô của nước Anh
b) 23 là số nguyên tố
c) 2021 chia hết cho 3
d) Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm.
Mệnh đề phủ định của các mệnh đề trên là:
a) “Paris không phải là thủ đô của nước Anh”
b) “23 không phải là số nguyên tố”
c) “2021 không chia hết cho 3”
d) “Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm”.
+) Xét tính đúng sai:
a) “Paris là thủ đô của nước Anh” là mệnh đề sai.
“Paris không phải là thủ đô của nước Anh” là mệnh đề đúng.
b) “23 là số nguyên tố” là mệnh đề đúng.
“23 không phải là số nguyên tố” là mệnh đề sai.
c) “2021 chia hết cho 3” là mệnh đề sai.
“2021 không chia hết cho 3” là mệnh đề đúng.
d) “Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm” là mệnh đề đúng.
“Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm” là mệnh đề sai.
Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và xác định tính đúng sai của mệnh đề phủ định đó.
P: “2 022 chia hết cho 5”
Q: “Bất phương trình 2x + 1 > 0 có nghiệm”.
Mệnh đề phủ định của mệnh đề P là \(\overline P \): “2 022 không chia hết cho 5”
Mệnh đề \(\overline P \) đúng.
Mệnh đề phủ định của mệnh đề Q là \(\overline Q \): “Bất phương trình \(2x + 1 > 0\) vô nghiệm”.
Mệnh đề \(\overline Q \) sai vì bất phương trình \(2x + 1 > 0\) có nghiệm, chẳng hạn: \(x = 0;\;x = 1\).
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ R: 3x = x2 + 1
D: “∃ x ∈ R: 3x = x2 + 1”
D− : “∀ x ∈ R ; 3x ≠ x2 + 1”
D− sai vì với
D− thỏa mãn:
Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.
a) A: “\(\frac{5}{{1,2}}\) là một phân số”.
b) B: “Phương trình \({x^2} + 3x + 2 = 0\) có nghiệm”.
c) C: “\({2^2} + {2^3} = {2^{2 + 3}}\)”.
d) D: “Số 2 025 chia hết cho 15”.
a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.
Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)
b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.
Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x = - 1\) và \(x = - 2\).
c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.
Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).
d) \(\overline D \): “Số 2 025 không chia hết cho 15”.
Sai vì 2025 = 15. 135, chia hết cho 15.
Xét tính đúng sai và viết mệnh đề phủ định của các mệnh đề sau:
a) \(\forall x \in \mathbb{R},{x^2} > 0\)
b) \(\exists x \in \mathbb{R},{x^2} = 5x - 4\)
c) \(\exists x \in \mathbb{Z},2x + 1 = 0\)
a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.
Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”
b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”
c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x = - \frac{1}{2} \notin \mathbb{Z}\)
Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”