Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thu
Xem chi tiết
Hoàng Văn Thái
14 tháng 9 2016 lúc 6:12

M=\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+\(\frac{1}{15}\)=\(\frac{1}{3}\)(1+\(\frac{1}{2}\)+\(\frac{1}{5}\))+\(\frac{1}{10}\)=\(\frac{1}{3}\)*\(\frac{17}{10}\)+\(\frac{3}{30}\)=\(\frac{20}{30}\)=\(\frac{2}{3}\)

Hoàng Văn Thái
14 tháng 9 2016 lúc 6:00

M=\(\frac{2}{3}\)

Nguyễn Trí Linh
Xem chi tiết
vimanhlinh
8 tháng 6 2019 lúc 14:43

kết quả bằng 2/3 

Hok tốt

Sư tử đáng yêu
8 tháng 6 2019 lúc 14:49

\(M=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+\frac{1}{1+2+3+4+5}\)

\(M=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\)

\(M=\frac{2}{3}\)

Nguyễn Tấn Phát
8 tháng 6 2019 lúc 14:52

\(M=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\)

\(M=\frac{10}{30}+\frac{5}{30}+\frac{3}{30}+\frac{2}{30}\)

\(M=\frac{10+5+3+2}{30}\)

\(M=\frac{20}{30}\)

\(M=\frac{2}{3}\)

HOK TOT

Trần Thị Kim Chi
Xem chi tiết
Trần Thị Kim Chi
16 tháng 9 2016 lúc 15:24

bucminh

Phan Thảo Nguyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2020 lúc 21:51

1) Ta có: \(2\cdot\left|\frac{1}{2}x-\frac{3}{8}\right|-\frac{3}{2}=\frac{1}{4}\)

\(2\cdot\left|\frac{1}{2}x-\frac{3}{8}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)

\(\left|\frac{1}{2}x-\frac{3}{8}\right|=\frac{7}{4}:2=\frac{7}{4}\cdot\frac{1}{2}=\frac{7}{8}\)

\(\left[{}\begin{matrix}\frac{1}{2}x-\frac{3}{8}=\frac{7}{8}\\\frac{1}{2}x-\frac{3}{8}=\frac{-7}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x=\frac{10}{8}\\\frac{1}{2}x=\frac{-4}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{10}{8}:\frac{1}{2}=\frac{10}{8}\cdot2=\frac{20}{8}=\frac{5}{2}\\x=\frac{-4}{8}:\frac{1}{2}=-\frac{4}{8}\cdot2=-\frac{8}{8}=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{5}{2};-1\right\}\)

2) Ta có: \(-5\cdot\left(x+\frac{1}{5}\right)-\frac{1}{2}\cdot\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)

\(-5x-1-\frac{1}{2}x+\frac{1}{3}-\frac{3}{2}x+\frac{5}{6}=0\)

\(\Leftrightarrow-7x+\frac{1}{6}=0\)

\(\Leftrightarrow-7x=-\frac{1}{6}\)

hay \(x=\frac{1}{42}\)

Vậy: \(x=\frac{1}{42}\)

3) Ta có: \(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)

\(\Leftrightarrow3x-\frac{3}{2}-5x-3+x-\frac{1}{5}=0\)

\(\Leftrightarrow-x-\frac{47}{10}=0\)

\(-x=\frac{47}{10}\)

hay \(x=\frac{-47}{10}\)

Vậy: \(x=\frac{-47}{10}\)

4) Ta có: \(\frac{3}{4}-2\left|2x-0,125\right|=2\)

\(\Leftrightarrow2\left|2x-\frac{1}{8}\right|=\frac{3}{4}-2=-\frac{5}{4}\)

\(\left|2x-\frac{1}{8}\right|=-\frac{5}{8}\)(vô lý)

Vậy: x∈∅

5) Ta có: \(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)

\(2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=\frac{-7}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x=\frac{7}{8}+\frac{1}{3}=\frac{29}{24}\\\frac{1}{2}x=-\frac{7}{8}+\frac{1}{3}=-\frac{13}{24}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{29}{24}:\frac{1}{2}=\frac{29}{24}\cdot2=\frac{29}{12}\\x=-\frac{13}{24}:\frac{1}{2}=-\frac{13}{24}\cdot2=-\frac{13}{12}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{29}{12};\frac{-13}{12}\right\}\)

hong pham
Xem chi tiết
Hoàng Phúc
29 tháng 7 2016 lúc 9:50

bài 1) Đặt \(B=\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\)

Ta có: \(A=B.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}\)

\(B.\frac{p}{m-n}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{p}{m-n}=\frac{m-n}{p}.\frac{p}{m-n}+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}\)

\(=1+\frac{n-p}{m}.\frac{p}{m-n}+\frac{p-m}{n}.\frac{p}{m-n}=1+\frac{p}{m-n}.\left(\frac{n-p}{m}+\frac{p-m}{n}\right)\)

\(=1+\frac{p}{m-n}.\left[\frac{\left(n-p\right).n}{mn}+\frac{\left(p-m\right).m}{mn}\right]=1+\frac{p}{m-n}.\frac{n^2-np+pm-m^2}{mn}\)

\(=1+\frac{p}{m-n}.\frac{\left(m-n\right).\left(p-m-n\right)}{mn}=1+\frac{p.\left(m-n\right).\left(p-m-n\right)}{\left(m-n\right).mn}=1+\frac{p.\left(p-m-n\right)}{mn}\)

\(=1+\frac{p^2-pm-pn}{mn}=1+\frac{p^2-p.\left(m+n\right)}{mn}\)

Vì m+n+p=0=>m+n=-p

\(=>B.\frac{p}{m-n}=1+\frac{p^2-p.\left(-p\right)}{mn}=1+\frac{2p^2}{mn}=1+\frac{2p^3}{mnp}\left(1\right)\)

\(B.\frac{m}{n-p}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{m}{n-p}=\frac{m-n}{p}.\frac{m}{n-p}+\frac{n-p}{m}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}\)

\(=1+\frac{m-n}{p}.\frac{m}{n-p}+\frac{p-m}{n}.\frac{m}{n-p}=1+\frac{m}{n-p}.\left(\frac{m-n}{p}+\frac{p-m}{n}\right)\)

\(=1+\frac{m}{n-p}.\left[\frac{\left(m-n\right).n}{np}+\frac{\left(p-m\right).p}{np}\right]=1+\frac{m}{n-p}.\frac{mn-n^2+p^2-mp}{np}\)

\(=1+\frac{m}{n-p}.\frac{\left(n-p\right).\left(m-n-p\right)}{np}=1+\frac{m.\left(n-p\right).\left(m-n-p\right)}{\left(n-p\right).np}=1+\frac{m.\left(m-n-p\right)}{np}\)

\(=1+\frac{m^2-mn-mp}{np}=1+\frac{m^2-m\left(n+p\right)}{np}=1+\frac{m^2-m.\left(-m\right)}{np}=1+\frac{2m^2}{np}=1+\frac{2m^3}{mnp}\left(2\right)\) (vì m+n+p=0=>n+p=-m)

\(B.\frac{n}{p-m}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{n}{p-m}=\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}+\frac{p-m}{n}.\frac{n}{p-m}\)

\(=1+\frac{m-n}{p}.\frac{n}{p-m}+\frac{n-p}{m}.\frac{n}{p-m}=1+\frac{n}{p-m}.\left(\frac{m-n}{p}+\frac{n-p}{m}\right)\)

\(=1+\frac{n}{p-m}.\left[\frac{\left(m-n\right).m}{pm}+\frac{\left(n-p\right).p}{pm}\right]=1+\frac{n}{p-m}.\frac{m^2-mn+np-p^2}{pm}\)

\(=1+\frac{n}{p-m}.\frac{\left(p-m\right).\left(n-p-m\right)}{pm}=1+\frac{n.\left(p-m\right).\left(n-p-m\right)}{\left(p-m\right).pm}=1+\frac{n.\left(n-p-m\right)}{pm}\)

\(=1+\frac{n^2-np-mn}{pm}=1+\frac{n^2-n\left(p+m\right)}{pm}=1+\frac{n^2-n.\left(-n\right)}{pm}=1+\frac{2n^2}{pm}=1+\frac{2n^3}{mnp}\left(3\right)\) (vì m+n+p=0=>p+m=-n)

Từ (1),(2),(3) suy ra :

\(A=B.\frac{p}{m-n}+B.\frac{m}{n-p}+B.\frac{n}{p-m}=\left(1+\frac{2p^3}{mnp}\right)+\left(1+\frac{2m^3}{mnp}\right)+\left(1+\frac{2n^3}{mnp}\right)\)

\(=3+\frac{2p^3}{mnp}+\frac{2m^3}{mnp}+\frac{2n^3}{mnp}=3+\frac{2.\left(m^3+n^3+p^3\right)}{mnp}\)

*Tới đây để tính được m3+n3+p3,ta cần CM được bài toán phụ sau:

Đề: Cho m+n+p=0.CMR: \(m^3+n^3+p^3=3mnp\)

Từ m+n+p=0=>m+n=-p

Ta có: \(m^3+n^3+p^3=\left(m+n\right)^3-3m^2n-3mn^2+p^3=-p^3-3mn\left(m+n\right)+p^3\)

\(=-3mn\left(m+n\right)=-3mn.\left(-p\right)=3mnp\)

Vậy ta đã CM được bài toán phụ

*Trở lại bài toán chính: \(A=3+\frac{2.3mnp}{mnp}=3+\frac{6mnp}{mnp}=3+6=9\)

Vậy A=9

Hoàng Phúc
29 tháng 7 2016 lúc 10:18

bài 2)

a)Nhận thấy các thừa số của A đều có dạng tổng quát sau:

\(n^3+1=n^3+1^3=\left(n+1\right)\left(n^2-n+1\right)=\left(n+1\right).\left(n^2-n+\frac{1}{4}+\frac{3}{4}\right)\)

\(=\left(n+1\right).\left(n^2-2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n+1\right).\left[\left(n-\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]\)

\(n^3-1=n^3-1^3=\left(n-1\right)\left(n^2+n+1\right)=\left(n-1\right).\left(n^2+n+\frac{1}{4}+\frac{3}{4}\right)\)

\(=\left(n-1\right).\left(n^2+2.n.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\right)=\left(n-1\right).\left[\left(n+\frac{1}{2}\right)^2+\frac{3}{4}\right]=\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]\)

suy ra \(\frac{n^3+1}{n^3-1}=\frac{\left(n+1\right).\left[\left(n-0,5\right)^2+0,75\right]}{\left(n-1\right).\left[\left(n+0,5\right)^2+0,75\right]}\)

Do đó: \(\frac{2^3+1}{2^3-1}=\frac{\left(2+1\right).\left[\left(2-0,5\right)^2+0,75\right]}{\left(2-1\right).\left[\left(2+0,5\right)^2+0,75\right]}=\frac{3.\left(1,5^2+0,75\right)}{1.\left(2,5^2+0,75\right)}\)

\(\frac{3^3+1}{3^3-1}=\frac{\left(3+1\right).\left[\left(3-0,5\right)^2+0,75\right]}{\left(3-1\right).\left[\left(3+0,5\right)^2+0,75\right]}=\frac{4.\left(2,5^2+0,75\right)}{2.\left(3,5^2+0,75\right)}\)

...........................

\(\frac{10^3+1}{10^3-1}=\frac{\left(10+1\right).\left[\left(10-0,5\right)^2+0,75\right]}{\left(10-1\right).\left[\left(10+0,5\right)^2+0,75\right]}=\frac{11.\left(9,5^2+0,75\right)}{9.\left(10,5^2+0,75\right)}\)

\(=>A=\frac{3\left(1,5^2+0,75\right).4\left(2,5^2+0,75\right)........11.\left(9,5^2+0,75\right)}{1\left(2,5^2+0,75\right).2.\left(3,5^2+0,75\right)........9\left(10,5^2+0,75\right)}=\frac{3.4........11}{1.2......9}.\frac{1,5^2+0,75}{10,5^2+0,75}\)

\(=\frac{10.11}{2}.\frac{1}{37}=\frac{2036}{37}\)

Vậy A=2036/37

b) có thể ở chỗ 1+1/4 bn nhầm,phải là \(1^4+\frac{1}{4}\) ,mà chắc cũng chẳng sao,vì 14=1 mà

Nhận thấy các thừa số của B có dạng tổng quát:

\(n^4+\frac{1}{4}=n^4+n^2+\frac{1}{4}-n^2=\left(n^2\right)^2+2.n^2.\frac{1}{2}+\frac{1}{4}-n^2=\left(n^2+\frac{1}{2}\right)^2-n^2\)

\(=\left(n^2+\frac{1}{2}-n\right)\left(n^2+\frac{1}{2}+n\right)\)

\(B=\frac{\left(1^2+\frac{1}{2}-1\right).\left(1^2+\frac{1}{2}+1\right).\left(3^2+\frac{1}{2}+3\right).\left(3^2+\frac{1}{2}-3\right)..........\left(9^2+\frac{1}{2}-9\right).\left(9^2+\frac{1}{2}+9\right)}{\left(2^2+\frac{1}{2}-2\right).\left(2^2+\frac{1}{2}+2\right).\left(4^2+\frac{1}{2}-4\right).\left(4^2+\frac{1}{2}+4\right)......\left(10^2+\frac{1}{2}-10\right).\left(10^2+\frac{1}{2}+10\right)}\)

Mặt khác,ta cũng có: \(\left(a+1\right)^2-\left(a+1\right)+\frac{1}{2}=a^2+2a+1-a-1+\frac{1}{2}=a^2+a+\frac{1}{2}\)

Suy ra \(B=\frac{1^2+\frac{1}{2}-1}{10^2+\frac{1}{2}+10}=\frac{1}{221}\)

Vậy B=1/221

Nitrox vntm
Xem chi tiết
Minh Lệ
28 tháng 1 2020 lúc 17:10

b)

program hotrotinhoc;

var s: real;

i,n: byte;

function t(x: byte): longint;

var j: byte;

t1: longint;

begin

t1:=1;

for j:=1 to x do

t1:=t1*j;

t1:=t;

end;

begin

readln(n);

s:=0;

for i:=1 to n do

s:=s+1/t(i);

write(s:1:2);

readln

end.

c) Đề em ghi sai rồi thế này với đúng :

\(T=1+\frac{2}{2^2}+\frac{3}{3^2}+\frac{4}{4^2}+...+\frac{n}{n^2}\)

program hotrotinhoc;

var t: real;

n,i: byte;

begin

readln(n);

t:=0;

for i:=1 to n do

t:=t+i/(i*i);

write(t:1:2);

readln

end.

Khách vãng lai đã xóa
✿✿❑ĐạT̐®ŋɢย❐✿✿
28 tháng 1 2020 lúc 11:05

a)

uses crt;

var N,S,i : integer;

begin clrscr;

S:=1;

for i:= 1 to N do S:=S*i;

writeln('N!=',S);

readln

end.

Các cái kia tương tự :))

Khách vãng lai đã xóa
Minh Lệ
28 tháng 1 2020 lúc 17:20

d)

program hotrotinhoc;

var i,n: byte;

s: real;

function mu(x: byte): longint;

var j : byte;

k: longint;

begin

k:=1;

for j:=1 to x do

k:=k*x;

k:=mu;

end;

begin

readln(n);

s:=0;

for i:=1 to n do

s:=s+1/mu(i);

write(s:1:2);

readln

end.

e)

program hotrotinhoc;

var s: real;

i,n: byte;

begin

readln(n);

s:=0;

for i:=1 to n do

s:=s+i/(i+1);

write(s:1:2);

readln

end.

Khách vãng lai đã xóa
Nguyễn Quốc Việt
Xem chi tiết
Nguyệt
5 tháng 7 2019 lúc 20:27

\(\frac{1}{M}=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{59.60}{2}}\)

\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}\)

\(\frac{1}{M}=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{60}\right)\)

\(\frac{1}{M}=\frac{2}{3}-\frac{2}{60}< \frac{2}{3}\)

-theo t đề là M chứ ko phải 1/M 

Nguyễn Hà Phương
Xem chi tiết
Hoa Anh Đào
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
3 tháng 8 2017 lúc 12:45

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4+5}\)  = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{15}\)\(\frac{10}{30}+\frac{5}{30}+\frac{2}{30}\)\(\frac{10+5+2}{30}\)\(\frac{17}{30}\)

Hoa Anh Đào
3 tháng 8 2017 lúc 12:47

Trong đề có 4 đáp án là a)\(\frac{1}{6}\)

b)\(\frac{5}{6}\)

c) \(\frac{1}{3}\)

d)\(\frac{2}{3}\)

✓ ℍɠŞ_ŦƦùM $₦G ✓
3 tháng 8 2017 lúc 12:50

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4+5}\)

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{15}\)

\(\frac{10}{30}+\frac{5}{30}+\frac{2}{30}\)

\(\frac{10+5+2}{30}\)

\(\frac{17}{30}\)

Vậy M = \(\frac{17}{30}\)