Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Hồng Phúc
Xem chi tiết
HT.Phong (9A5)
3 tháng 7 2023 lúc 14:44

a) \(\left\{{}\begin{matrix}2x+3y=5\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x-5y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=5\\11y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3\cdot\dfrac{9}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+\dfrac{27}{11}=5\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{28}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{14}{11}\\y=\dfrac{9}{11}\end{matrix}\right.\)

Vậy: \(x=\dfrac{14}{11};y=\dfrac{9}{11}\)

Nguyễn Băng Băng
Xem chi tiết
Nguyễn Văn Sơn
29 tháng 8 2018 lúc 20:31

tôi bí

Hoàng Trung Đức
Xem chi tiết
Kiệt Nguyễn
8 tháng 5 2020 lúc 13:40

\(\hept{\begin{cases}4\sqrt{x+1}-xy\sqrt{y^2+4}=0\left(1\right)\\\sqrt{x^2-xy^2+1}+3\sqrt{x-1}=xy^2\left(2\right)\end{cases}}\)

\(ĐK:\hept{\begin{cases}x\ge1\\x^2-xy^2+1\ge0\end{cases}}\), kết hợp với phương trình (1) ta có y > 0

Từ (1) suy ra \(4\sqrt{x+1}=xy\sqrt{y^2+4}\)

\(\Leftrightarrow16\left(x+1\right)=x^2y^2\left(y^2+4\right)\Leftrightarrow\left(y^4+4y^2\right)x^2-16x-16=0\)

Giải phương trình theo ẩn x, ta được: \(x=\frac{4}{y^2}\)hoặc \(x=\frac{-4}{y^2+4}< 0\)(loại)

Với \(x=\frac{4}{y^2}\Leftrightarrow xy^2=4\)thay vào phương trình (2), ta được \(\sqrt{x^2-3}+3\sqrt{x-1}=4\)(*)

\(ĐK:x\ge\sqrt{3}\), ta có: (*)\(\Leftrightarrow\left(\sqrt{x^2-3}-1\right)+3\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2-3}+1}+\frac{3\left(x-2\right)}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2-3}+1}+\frac{3}{\sqrt{x-1}+1}\right)=0\)

Dễ thấy \(\frac{x+2}{\sqrt{x^2-3}+1}+\frac{3}{\sqrt{x-1}+1}>0\forall x\ge\sqrt{3}\)nên x - 2 = 0\(\Leftrightarrow x=2\)

Với x = 2, ta có: \(\hept{\begin{cases}y^2=2\\y>0\end{cases}}\Leftrightarrow y=\sqrt{2}\)

Vậy hệ phương trình có 1 nghiệm duy nhất \(\left(x;y\right)=\left(2;\sqrt{2}\right)\)

Khách vãng lai đã xóa
nguyen le phuong linh
Xem chi tiết
Thắng Nguyễn
26 tháng 5 2017 lúc 22:01

a)\(\hept{\begin{cases}x+y+xy=11\\x^2y+xy^2=30\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y+xy=11\\xy\left(x+y\right)=30\end{cases}}\)

Đặt \(S=x+y;P=xy\left(S^2\ge4P\right)\) có:

\(\hept{\begin{cases}S+P=11\\SP=30\end{cases}}\Rightarrow\hept{\begin{cases}S=5\\P=6\end{cases}}or\hept{\begin{cases}S=6\\P=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y=6\\xy=5\end{cases}or\hept{\begin{cases}x+y=5\\xy=6\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\y=5\end{cases};\hept{\begin{cases}x=5\\y=1\end{cases}}or\hept{\begin{cases}x=2\\y=3\end{cases}};\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

b)Thay số hay đặt ẩn.... gì đó tùy, nhiều pp 

ra \(x=8;y=-8\)

Nguyen Thi Thu Huyen
Xem chi tiết
Ngô Bá Hùng
5 tháng 4 2020 lúc 20:28

\(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^2-y^{ }\right)^2+xy+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y+1\right)\left(xy+1\right)=2\\\left(x^2-y\right)^2+xy=2\end{matrix}\right.\)

\(\Rightarrow\left(x^2-y+1\right)\left(xy+1\right)-\left(x^2-y\right)^2-\left(xy+1\right)=0\)

\(\Leftrightarrow\left(xy+1\right)\left(x^2-y\right)-\left(x^2-y\right)^2=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}y=x^2\\xy+1=x^2-y\end{matrix}\right.\)thay PT xuống dưới

Với \(y=x^2\) thay xuống PT dưới \(\Rightarrow x^3=1\)

Với \(xy+1=x^2-y\) thay xuống dưới:

\(\left\{{}\begin{matrix}xy+1=x^2-y\\2\left(xy+1\right)=2\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}xy+1=x^2-y\\xy=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0;y=-1\\y=0;x^2=1\end{matrix}\right.\)

Khách vãng lai đã xóa
Diệu Huyền
5 tháng 4 2020 lúc 20:48

\(\left\{{}\begin{matrix}x^2+x^3y-xy^2+xy-y=1\left(1\right)\\x^4+y^2-xy\left(2x-1\right)=1\left(2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y\right)+xy\left(x^2-y\right)+xy=1\\\left(x^2-y\right)^2+xy=1\end{matrix}\right.\)

Đặt: \(\left\{{}\begin{matrix}a=x^2-y\\b=xy\end{matrix}\right.\)

Ta có hệ phương trình mới:

\(\left\{{}\begin{matrix}a+ab+b=1\\a^2+b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a^3+a^2-2a=0\\b=1-a^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\left(a^2+a-2\right)=0\\b=1-a^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=0;1;-2\\b=1;0;-3\end{matrix}\right.\)

Với: \(\left(a,b\right)=\left(0;1\right)\) ta có hệ: \(\left\{{}\begin{matrix}x^2-y=0\\xy=1\end{matrix}\right.\Leftrightarrow x=y=1\)

Tương tự như trên .....

Vậy hệ pt có nghiệm \(\left(x,y\right)=\left\{\left(1;1\right);\left(0;-1\right);\left(-1;0\right);\left(1;0\right);\left(-1;3\right)\right\}\)

Khách vãng lai đã xóa
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 3 2021 lúc 0:39

Câu a pt đầu là \(x^2+2xy^2=3\) hay \(x^3+2xy^2=3\) vậy nhỉ? Nhìn \(x^2\) chẳng hợp lý chút nào

b. \(\Leftrightarrow\left\{{}\begin{matrix}x^2\left(xy+1\right)-y\left(xy+1\right)+xy+1=2\\\left(x^4+y^2-2x^2y\right)+xy+1=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-y\right)\left(xy+1\right)+xy+1=2\\\left(x^2-y\right)^2+xy+1=2\end{matrix}\right.\)

Trừ vế cho vế:

\(\left(x^2-y\right)\left(xy+1\right)-\left(x^2-y\right)^2=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(xy+1-x^2+y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left[y\left(x+1\right)+\left(x+1\right)\left(1-x\right)\right]=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(x+1\right)\left(y+1-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x^2\\x=-1\\y=x-1\end{matrix}\right.\)

- Với \(y=x^2\) thế xuống pt dưới:

\(x^4+x^4-x^3\left(2x-1\right)=1\Leftrightarrow x^3=1\Leftrightarrow...\)

....

Hai trường hợp còn lại bạn tự thế tương tự

Ninh thanhtha
Xem chi tiết
trần gia bảo
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Thanh Tùng DZ
29 tháng 12 2019 lúc 20:37

\(\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{cases}}\)

Khách vãng lai đã xóa
Thanh Tùng DZ
29 tháng 12 2019 lúc 20:49

\(\Leftrightarrow\hept{\begin{cases}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+2x^2y+y^2+xy=\frac{-5}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x^2+y+xy\left(x^2+y\right)+xy=\frac{-5}{4}\left(1\right)\\\left(x^2+y\right)^2+xy=\frac{-5}{4}\left(2\right)\end{cases}}}\)

Đặt x2 + y = a ; xy = b

Khi đó hệ phương trình trở thành : \(\hept{\begin{cases}a+ab+b=\frac{-5}{4}\\a^2+b=\frac{-5}{4}\end{cases}}\)\(\Leftrightarrow a+ab-a^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=0\\b-a+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2+y=0\\xy-\left(x^2+y\right)+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=-x^2\\x^2+y=xy+1\end{cases}}}\)

với y = -x2 thay vào ( 2 ), ta có : x . ( -x2 ) = \(\frac{-5}{4}\)\(\Rightarrow x=\sqrt[3]{\frac{5}{4}}\Rightarrow y=-\sqrt[3]{\frac{25}{16}}\)

với x2 + y = xy + 1 \(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)=0\Leftrightarrow\left(x-1\right)\left(x+1-y\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=y-1\end{cases}}\)từ đó suy ra \(y=\frac{-3}{2}\)

Vậy ....

Khách vãng lai đã xóa