Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tranvandat
Xem chi tiết
Vũ Ngọc Thảo Nguyên
Xem chi tiết
Ái Kiều
Xem chi tiết
Minh Bình
Xem chi tiết
ILoveMath
7 tháng 3 2022 lúc 10:52

Ta có: |x+y-2|≥0\(\forall\)x, y

Dấu "=" xảy ra \(\Leftrightarrow x+y-2=0\)

\(\left(2x-1\right)^{2022}\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

\(\Rightarrow A=\left|x+y-2\right|+\left(2x-1\right)^{2022}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+y-2=0\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}+y-2=0\\x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(A_{min}=0\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{3}{2}\end{matrix}\right.\)

 

Hày Cưi
Xem chi tiết
Doraemon
16 tháng 11 2018 lúc 17:33

\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)

Hay \(ab\le2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

Hày Cưi
16 tháng 11 2018 lúc 17:39

ủa bạn tìm giá trị nhỏ nhất của biểu thức S=ab+2019 mà 

Việt Hà Nguyễn
Xem chi tiết
Neo Amazon
Xem chi tiết
Lê Ng Hải Anh
24 tháng 3 2019 lúc 21:02

\(A=|x+1|+5\ge5\forall x\)

=> Min A = 5 tại \(|x+1|=0\Rightarrow x=-1\)

\(B=\frac{x^2+15}{x^2+3}=1+\frac{12}{x^2+3}\)

Ta có: \(x^2+3\ge3\forall x\)

Min x2 + 3 = 3 tại x = 0

Khi đó: Max B = 1+ 12/3 = 5 tại x = 0

=.= hk tốt!!

|x+1 lớn hơn hoặc bằng 0 

=> |x+1|+5 lớn hơn hoặc bằng 5

Dấu = xảy ra khi x+1=0 <=> x=-1

Vậy Min A = 5 khi x=-1 

nguyễn văn du
Xem chi tiết
Nguyệt
24 tháng 11 2018 lúc 17:46

\(\hept{\begin{cases}\left|5x-2\right|\ge0\\\left|3y-9\right|\ge0\end{cases}\Rightarrow4-\left|5x-2\right|-\left|3y-9\right|\le4}\)

dấu = xảy ra khi và chỉ khi 

\(\hept{\begin{cases}\left|5x-2\right|\ge0\\\left|3y-9\right|\ge0\end{cases}\Rightarrow\hept{\begin{cases}5x=2\\3y=9\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{2}{5}\\y=3\end{cases}}}\)

Vậy max A =4 khi và chỉ khi \(\hept{\begin{cases}x=\frac{2}{5}\\y=3\end{cases}}\)

\(B=\frac{3}{2+5\left|2x^2-1\right|}\)

\(\left|2x^2-1\right|\ge0\Rightarrow5\left|2x^2-1\right|\ge0\Rightarrow2+5\left|2x^2-1\right|\ge2\)

\(\Rightarrow B\le\frac{3}{2}\)

dấu = xảy ra khi |2x2-1|=0

=> \(x=\pm\frac{1}{\sqrt{2}}\)

Vậy max B=\(\frac{3}{2}\)khi và chỉ khi \(x=\pm\frac{1}{\sqrt{2}}\)

tth_new
24 tháng 11 2018 lúc 17:46

Ta có: \(A=4-\left|5x-2\right|-\left|3y+9\right|\)

\(=4-\left(\left|5x-2\right|-\left|3y+9\right|\right)\)

A đạt GTLN (Max) khi \(\left(\left|5x-2\right|-\left|3y+9\right|\right)\) bé nhất

Mà \(\left|5x-2\right|\ge0\)

\(\left|3y+9\right|\ge0\)

Nên \(\left(\left|5x-2\right|-\left|3y+9\right|\right)\ge0\)

Suy ra \(A=4-\left(\left|5x-2\right|-\left|3y+9\right|\right)\le4\)

Dấu "=" xảy ra \(\Leftrightarrow\left|5x-2\right|=\left|3y+9\right|=0\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\y=-\frac{9}{3}\end{cases}}\)

Vậy \(M_{max}=4\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{5}\\y=-\frac{9}{3}\end{cases}}\)

Nguyệt
24 tháng 11 2018 lúc 17:48

>: nhìn bài tth mới bt làm lộn sorry nha

\(\left|3y+9\right|\ge0\)

=>.....như lúc nãy-đổi cái kết quả hộ tớ :>

Nguyễn Thành Hiếu
Xem chi tiết
Nguyễn Châu Anh
10 tháng 12 2017 lúc 10:46

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{5}{2}^2\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\le\frac{1}{\frac{31}{4}}=\frac{4}{31}\)

Dấu "=" xảy ra khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)

Vậy GTLN của \(D=\frac{4}{31}\)tại \(x=-\frac{5}{2}\)

Trần Thị Kim Ngân
10 tháng 12 2017 lúc 10:53

\(D=\frac{1}{x^2+5x+14}=\frac{1}{\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{31}{4}}=\frac{1}{\left(x+\frac{5}{2}\right)^2+\frac{31}{4}}\)

D đạt giá trị lớn nhất khi và chỉ khi \(x+\frac{5}{2}=0\leftrightarrow x=\frac{-5}{2}\)

Vậy \(D=\frac{4}{31}\leftrightarrow x=\frac{-5}{2}\)