Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ha thu huong
Xem chi tiết
Băng Mikage
5 tháng 7 2017 lúc 10:13

(a-b)= (a-b).(a-b)

         = a2 - ab - ab + b2

         = a2 - 2ab + b2 (đpcm)

Kiều Linh Giang
5 tháng 10 2021 lúc 15:15
Ko phải bạn ạ
Khách vãng lai đã xóa
Nguyễn Hoàng Thiên Băng
Xem chi tiết
Hanny. Ngân
Xem chi tiết
bui manh dung
Xem chi tiết
Trần Thị Loan
9 tháng 7 2015 lúc 10:54

a) Vế trái = a2 - 3a + 2 + a2 - 7a + 12 - 2a2 - 5a + 34 = (a2 + a2 - 2a2) + (-3a - 7a - 5a) + 2 + 12 + 34 = -15a + 48 khác vê phải 

=> đề sai

b) Vế trái = a3 - b3 - (a3 + b3) = -2b3 = vế phải => đpcm

Nguyễn Minh Thương
Xem chi tiết
NoName.155774
Xem chi tiết

1) a³ + b³ + c³ - 3abc

=(a + b)(a² - ab + b²) + c³ - 3abc

=(a + b)(a² - ab + b²) + c(a² - ab + b²) - 2abc - ca² - cb²

=(a + b + c)(a² - ab + b²) - (abc + b²c + bc² + ac² + abc + c²a) + c³ + ac² + bc²

=(a + b = c)(a² - ab + b²) - (a + b + c)(bc + ca) + c²(a + b + c)

=(a + b + c)(a² + b² + c² - ab - bc - ca)

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 12:49

2) \(\left(3a+2b-1\right)\left(a+5\right)-2b\left(a-2\right)=\left(3a+5\right)\left(a-3\right)+2\left(7b-10\right)\left(1\right)\)

\(\Leftrightarrow3a^2+15a+2ab+10b-a-5-2ab+4b=3a^2+14a+15+14b-10\)

\(\Leftrightarrow3a^2+14a+14b-5=3a^2+14a+14b-5\)( đúng)

\(\Rightarrow\left(1\right)\) đúng (đpcm)

Lấp La Lấp Lánh
20 tháng 8 2021 lúc 12:54

1) \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc-3ab\right)\)

\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\left(đpcm\right)\)

Girl Personality
Xem chi tiết
Nguyễn Tũn
7 tháng 8 2018 lúc 16:38

Hãy tích cho tui đi

vì câu này dễ mặc dù tui ko biết làm 

Yên tâm khi bạn tích cho tui

Tui sẽ ko tích lại bạn đâu

THANKS

Nguyễn Huy Tú
18 tháng 1 2021 lúc 22:28

\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Dấu ''='' xảy ra <=> a = b = c = 1 

Khách vãng lai đã xóa
Yeutoanhoc
28 tháng 6 2021 lúc 16:43

`a^2+b^2+c^2+3=2(a+b+c)`

`<=>a^2+b^2+c^2+3-2a-2b-2c=0`

`<=>a^2-2a+1+b^2-2b+1+c^2-2c+1=0`

`<=>(a-1)^2+(b-1)^2+(c-1)^2=0`

`VT>=0`

Dấu "=" `<=>a=b=c=1`

Áp dụng bđt cosi ta có:

`a^2+b^2>=2ab`

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

`=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`=>a^2+b^2+c^2>=ab+bc+ca`

`=>(a+b+c)^2>=3(ab+bc+ca)`

Dấu '=" `<=>a=b=c`

3 không rõ đề

Ngọc Diễm Nguyễn
Xem chi tiết
Nguyễn thành Đạt
26 tháng 6 2023 lúc 20:17

a) \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\left(ab+bc+ac\right)\)

\(=a^3+ab^2+ac^2+a^2b+b^3+c^2b+a^2c+b^2c+c^3-a^2b-abc-a^2c-ab^2-b^2c-abc-abc-bc^2-ac^2\)

\(=a^3+b^3+c^3-3abc\left(đpcm\right)\)

b) Bạn chỉ cần nhân bung cả 2 vế ra là được á .

c) \(2\left(a+b+c\right)\left(\dfrac{b}{2}+\dfrac{c}{2}-\dfrac{a}{2}\right)\)

\(=2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)

\(=\left(a+b+c\right)\left(b+c-a\right)\)

\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)

\(=2bc+b^2+c^2-a^2\left(đpcm\right)\)

Nguyễn Lan Hương
Xem chi tiết
Jennie Kim
2 tháng 9 2020 lúc 10:41

a. (a-b)^2 = (a-b)(a-b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2

b. (a+b)^3= (a+b)(a+b)(a+b) = (a^2 + 2ab + b^2)(a + b) = a^3 + a^2b + 2a^2b + 2ab^2 + ab^2 + b^3 = a^3 + 3a^2b + 3b^2a + b^3

c. (a-b)^3= (a - b)(a-b)(a-b) = (a^2 - 2ab + b^2)(a - b) = a^3 - a^2b - 2a^2b + 2ab^2 + b^2a - b^3 = a^3 - 3a^2b + 3ab^2 - b^3

e. (a-b) ( a^2 + ab +b^2) = a^3 + a^2b + b^2a - ba^2 - ab^2 - b^3 = a^3 - b^3

g. ( a-b) ( a+b) = a^2 +ab -ab - b^2 = a^2 - b^2

Khách vãng lai đã xóa
Nguyen hoan
Xem chi tiết
Akai Haruma
6 tháng 1 2024 lúc 0:05

Lời giải:
Áp dụng BĐT Cô-si:
a^3+2b^3=a^3+b^3+b^3\geq 3\sqrt[3]{a^3b^6}=3ab^2$

$a^3+1+1\geq 3a$

$b^3+1+1\geq 3b$

Cộng theo vế các BĐT trên:

$a^3+2b^3+(a^3+2)+2(b^3+2)\geq 3ab^2+3a+6b$

$\Leftrightarrow 2(a^3+2b^3)+6\geq 3(ab^2+a+2b)=3.4=12$

$\Rightarrow a^3+2b^3\geq (12-6):2=3$

Ta có đpcm.

Dấu "=" xảy ra khi $a=b=1$