Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anhh Vann
Xem chi tiết
Nguyễn thành Đạt
27 tháng 8 2023 lúc 9:59

Ta có : \(B\text{=}4x^2-12x+9\)

\(B\text{=}\left(2x-3\right)^2\)

Với \(x\text{=}\dfrac{1}{2}\)

\(\Rightarrow B\text{=}\left(2.\dfrac{1}{2}-3\right)^2\)

\(B\text{=}\left(-2\right)^2\text{=}4\)

Ta có : \(A\text{=}5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A\text{=}5\left(x^2-9\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A\text{=}5x^2-45+4x^2+12x+9+x^2-12x+36\)

\(A\text{=}10x^2\)

Với \(x\text{=}-\dfrac{1}{5}\)

\(\Rightarrow A\text{=}10.\left(-\dfrac{1}{5}\right)^2\text{=}\dfrac{2}{5}\)

Kiều Vũ Linh
27 tháng 8 2023 lúc 9:57

B = 4x² - 12x + 9

= (2x - 3)²

Tại x = 1/2 ta có:

B = (2.1/2 - 3)²

= (-2)²

= 4

-------------------

A = 5(x + 3)(x - 3) + (2x + 3)² + (x - 6)²

= 5x² - 45 + 4x² + 12x + 9 + x² - 12x + 36

= 10x²

Tại x = 1/5 ta có:

A = 10.(1/5)²

= 2/5

HT.Phong (9A5)
27 tháng 8 2023 lúc 9:57

\(B=4x^2-12x+9\)

\(B=\left(2x\right)^2-2\cdot2x\cdot3+3^2\)

\(B=\left(2x-3\right)^2\)

Thay \(x=\dfrac{1}{2}\) vào B ta có: 

\(B=\left(2\cdot\dfrac{1}{2}-3\right)^2=4\)

_______________________

\(A=5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)

\(A=5\left(x^2-9\right)+4x^2+12x+9+x^2-12x+36\)

\(A=5x^2-45+5x^2+45\)

\(A=10x^2\)

Thay \(x=\dfrac{1}{5}\)vào A ta có:

\(A=10\cdot\left(-\dfrac{1}{5}\right)^2=\dfrac{2}{5}\)

Ú Bé Heo (ARMY BLINK)
Xem chi tiết
Trần Ái Linh
20 tháng 7 2021 lúc 21:54

`5x(4x^2-2x+1)-2x(10x^2-5x-2)`

`= 20x^3-10x^2+5x - (20x^3-10x^2-4x)`

`=9x`

Thay `x=15` có: `9.15=135`.

thuuminhh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 11 2023 lúc 18:59

a: \(N=\left(2x-3y\right)\left(2x+3y\right)=\left(2x\right)^2-\left(3y\right)^2\)

\(=4x^2-9y^2\)

Thay x=1/2 và y=1/3 vào N, ta được:

\(N=4\cdot\left(\dfrac{1}{2}\right)^2-9\left(\dfrac{1}{3}\right)^2\)

\(=4\cdot\dfrac{1}{4}-9\cdot\dfrac{1}{9}\)

=1-1

=0

b: \(N=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=\left(2x\right)^3-y^3=8x^3-y^3\)

Khi x=1 và y=3 thì \(N=8\cdot1^3-3^3=8-27=-19\)

Lò thị lim
Xem chi tiết
Akai Haruma
28 tháng 12 2023 lúc 9:52

Lời giải:

$A=(2x-1)(4x^2+2x+1)-7(x^3+1)=(2x)^3-1^3-7x^3-7$

$=8x^3-1-7x^3-7=x^3-8$

b.

Tại $x=\frac{-1}{2}$ thì: $A=(\frac{-1}{2})^3-8=\frac{-65}{8}$

TN NM BloveJ
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 10:12

a: A=(x-1)^2=(-1-1)^2=4

b: B=(2x+1)^2=2^2=4

Hà Chí Hiếu
Xem chi tiết
Akai Haruma
15 tháng 1 2023 lúc 20:05

Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$

$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.

$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$

$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)

Akai Haruma
17 tháng 1 2023 lúc 17:58

$P=(x+1)^3-(x-1)^3-3[(x-1)^2+(x+1)^2]$

$=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-3[(x^2-2x+1)+(x^2+2x+1)]$

$=6x^2+2-3(2x^2+1)=3(2x^2+1)-3(2x^2+1)=0$ là giá trị không phụ thuộc vào giá trị của biến.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 12 2018 lúc 2:52

a) M = -195.                   b) N = 81.

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2021 lúc 9:55

a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)

\(=\left(3x-2+3x+2\right)^2\)

\(=36x^2\)(1)

Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:

\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)

b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

\(=\left(x+y-7-y+6\right)^2\)

\(=\left(x-1\right)^2=100^2=10000\)

Nguyên Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 7 2021 lúc 10:56

a) Ta có: \(\left(x-1\right)\left(x-2\right)\left(x^2+x+1\right)\left(x^2+2x+4\right)-x^6+9x^3\)

\(=\left(x-1\right)\left(x^2+x+1\right)\left(x-2\right)\left(x^2+2x+4\right)-x^6+9x^3\)

\(=\left(x^3-1\right)\left(x^3-8\right)-x^6+9x^3\)

\(=x^6-9x^3+8-x^6+9x^3=8\)

b) Ta có: \(\left(\dfrac{1}{3}+2x\right)\left(\dfrac{1}{9}-\dfrac{2}{3}x+4x^2\right)-\left(2x-\dfrac{1}{3}\right)\left(4x^2+\dfrac{2}{3}x+\dfrac{1}{4}\right)\)

\(=\dfrac{1}{27}+8x^3-8x^3+\dfrac{1}{27}\)

\(=\dfrac{2}{27}\)

c) Ta có: \(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)

\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)

=0

d) Ta có: \(\left(x^2-y^2\right)\left(x^2+xy+y^2\right)\left(x^2-xy+y^2\right)-x^6+y^6\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)-x^6+y^6\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)-x^6+y^6\)

\(=x^6-y^6-x^6+y^6=0\)

Dung Vu
Xem chi tiết
Ngô Phương Linh
9 tháng 3 2022 lúc 13:33

chịu