-1/3+-1/15+-1/35+-1/63+...+-1/999999
\(\frac{1}{15}\)+\(\frac{1}{35}\)+\(\frac{1}{63}\)+......+\(\frac{1}{999999}\)
Ai nhanh mình add friend
=1/3x5+1/5x7+1/7x9+...+1/999x1001
=(1/3-1/5+1/5-1/7+...+1/999-1/1001)/2
=(1/3-1/1001)/2
=499/3003
Đặt A= 1/15+1/35+1/63+....+1/999999
A=1/3*5+1/5*7+1/7*9+.....+1/999*1001
A=1/2*(2/3*5+2/5*7+2/7*9+....+2/999*1001)
A=1/2*(5-3/3*5+7-5/5*7+9-7/7*9+....+1001-999/999*1001)(tự làm tiếp nhé)
A=1/2*(1/3-1/1001)
A=1/2*998/3003
A=499/3003 (nếu còn rút gọn được thì rút gọn nốt nhá)
A 2/3 + 2/15 + 2/35 + 2/63
B (1/15 + 1/35 + 1/63) x X =1
A=12/15 + 28/315
A=8/9
B. 1/9 x X = 1 X= 1: 1/9X= 91/15+1/35+1/63+...+1/(2x+1)×(2x+3)=15/93
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{15}{93}\)
\(\frac{1}{2}\)\(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)\)\(=\frac{15}{93}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{15}{93}:\frac{1}{2}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\rightarrow2x=90\rightarrow x=45\)
S= 1/3+1/15+1/35+1/63+...+1/120
Đề sai rồi em, mẫu số đều là số lẻ thì 120 ko theo quy luật
Các hạng trong S đều là số lẻ mà 120 là số chẵn nên đề sai nhé
tính:A=1/3+1/15+1/35+1/63+...+1/899
\(A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{899}\\ 2A=2\cdot\dfrac{1}{3}+2\cdot\dfrac{1}{15}+2\cdot\dfrac{1}{35}+2\cdot\dfrac{1}{63}+...+2\cdot\dfrac{1}{899}\\ 2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}\\ 2A=1-\dfrac{1}{31}\\ 2A=\dfrac{30}{31}\\ A=\dfrac{30}{31}\div2\\ A=\dfrac{30}{31\cdot2}=\dfrac{15}{31}\)
:))
1/3, 1/15, 1/35, 1/63, ?
Ta có:1/3=1/1*3;1/15=1/3*5;1/35=1/5*7;1/63=1/7*9.
Ta thấy các phân số trên đều có mẫu số tách được thành các số lẻ liên tiếp và tử số là 1.Số lẻ sau 9 là 11.
Vậy mẫu số của phân số cuối là: 9*11=99
Phân số đó là 1/99
Đáp số : 1/99
1/3=1/1x1/3
1/15=1/3x1/5
1/35=1/5x1/7
1/63=1/7x1/9
?=1/9x1/11
vay ?=1/99
co hai cach
1/3+1/15+1/35+1/63+1/99+1/143
Đặt phép tính cần tìm là A
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)
\(2A=1-\dfrac{1}{13}\)
\(2A=\dfrac{12}{13}\)
\(A=\dfrac{6}{13}\)
\(A=\dfrac{1}{3}+\dfrac{1}{15}+...+\dfrac{1}{143}\\ =\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\\ =\dfrac{1}{2}\times\left(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+...+\dfrac{1}{11\times13}\right)\\ =\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)\\ =\dfrac{1}{2}\times\dfrac{12}{13}\\ =\dfrac{6}{13}\)
-1/3+-1/15+-1/35+-1/63+...+-1/9999
(1/3+1/15+1/35+1/63):x=2 và 2/3
\(\Leftrightarrow\dfrac{4}{9}:x=\dfrac{8}{3}\)
hay \(x=\dfrac{4}{9}\cdot\dfrac{3}{8}=\dfrac{1}{2}\cdot\dfrac{1}{3}=\dfrac{1}{6}\)
a/ 1/2 + 5/6 + 11/12 + 19/20
b/ 1/2 + 5/6 + 11/12 + 19/20 + 29/30 + 41/42
c/ (1-1/3) + (1-1/15) + (1-1/35) + (1-1/63)
d/ 1/2 + 5/6 + 11/12 + ... + 9899/9900
e/ 2/3 + 14/15 + 34/35 +62/63
f/ 2/3 + 14/15 + 34/35 + ... + 9998/9999
cái này tính cái gì thế
ko hiểu