Tìm các cặp số nguyên x,y thỏa mãn:
\(\sqrt{x^2}+\sqrt{y^2}=4\)
Tìm các cặp số nguyên ( x;y) thỏa mãn 1 + \(\sqrt{x+y+3}\)= \(\sqrt{x}+\sqrt{y}\)
Tìm tất cả các cặp số (x; y) thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
\(pt\Leftrightarrow\frac{\sqrt{y-4}}{y}+\frac{\sqrt{x-4}}{x}=\frac{1}{2}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{y-4}}{y}=\frac{\sqrt{4\left(y-4\right)}}{2y}\le\frac{4+y-4}{2\cdot2y}=\frac{1}{4}\)
Tương tự ta cũng có \(\frac{\sqrt{x-4}}{x}\le\frac{1}{4}\)
Cộng theo vế ta có Đpcm
Dấu "=" xảy ra khi x=y, thay vào giải ra ta dc x=y=8
Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
1. Ta có: \(x^2-2xy-x+y+3=0\)
<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)
<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)
<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)
<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)
Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)
Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)
Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)
Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)
Kết luận:...
2. \(y^2+1\ge1>0;2x^2+x+1>0\) với mọi x; y
=> x + 5 > 0
=> \(y^2+1=\frac{x+5}{2x^2+x+1}\ge1\)
<=> \(x+5\ge2x^2+x+1\)
<=> \(x^2\le2\)
Vì x nguyên => x = 0 ; x = 1; x = -1
Với x = 0 ta có: \(y^2+1=5\Leftrightarrow y=\pm2\)
Với x = 1 ta có: \(y^2+1=\frac{3}{2}\)loại vì y nguyên
Với x = -1 ta có: \(y^2+1=2\Leftrightarrow y=\pm1\)
Vậy Phương trình có 4 nghiệm:...
Tìm các cặp số nguyên x và y thỏa mãn pt \(\sqrt{x^2-2x+13}\)=y
ĐK : \(x;y\in Z;y\ge0\)
\(\sqrt{x^2-2x+13}=y\)
\(\Leftrightarrow x^2-2x+13=y^2\)
\(\Leftrightarrow\left(x^2-2x+1\right)+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2+12=y^2\)
\(\Leftrightarrow\left(x-1\right)^2-y^2=-12\)
\(\Leftrightarrow\left(x-y-1\right)\left(x+y-1\right)=-12\) đến đây lm tiếp
Làm tiếp hộ mk !!!! xem mk làm có đúng ko ><
Tìm các cặp số nguyên (x,y) thỏa mãn \(\sqrt{x^2+4x-7}+y=2x+7\)
Tìm tất cả các cặp số (x,y) thỏa mãn điều kiện \(2\left(\sqrt{y-4}+y\sqrt{x-4}\right)+xy\)
Tím các cặp số nguyên x,y thỏa mãn:
\(\sqrt{4x^2}+\sqrt{y^2}=8\)
tìm cặp số thực x,y thỏa mãn điều kiện:
\(\sqrt{x-1}\)+\(\sqrt{3-x}=y^2+2\sqrt{2020}y+2022\).
\(\left(\sqrt{x-1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+3-x\right)=4\\ \Leftrightarrow\sqrt{x-1}+\sqrt{3-x}\le2\\ y^2+2\sqrt{2020}y+2022=\left(y^2+2y\sqrt{2020}+2020\right)+2\\ =\left(y+\sqrt{2020}\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x-1=3-x\\y+\sqrt{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-\sqrt{2020}\end{matrix}\right.\)
Vậy ...
ĐKXĐ: \(3\ge x\ge1\)
Áp dụng BĐT Bunhiacopski:
\(1\sqrt{x-1}+1\sqrt{3-x}\le\sqrt{\left(1^2+1^2\right)\left(x-1+3-x\right)}=\sqrt{2.2}=2\)
Mặt khác: \(y^2+2\sqrt{2020}y+2022=\left(y+\sqrt{2020}\right)^2+2\ge2\)
Nên để thõa mãn yêu cầu bài toán thì
\(\left\{{}\begin{matrix}\sqrt{x-1}=\sqrt{3-x}\\y+\sqrt{2020}=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=-\sqrt{2020}\end{matrix}\right.\)
Tìm các số x y z nguyên thỏa mãn \(\sqrt{2}\) (x-y)+xy=2 . \(\sqrt{2}\)+3 . \(\sqrt{2}\)
giúp mình mình tích cho