Cho góc xOy khác góc bẹt. Lấy các điểm A,B thuộc tia Ox sao cho OA<OB. Lấy các điểm C,D thuộc tia Oy sao cho OC=OA< OB=OD> Gọi M là giao điểm của AD và BC. Chứng minh
a) AD=BC
b) Tam giác MAB=tam giác MCD
c) OM là tia phân giác của góc xOy
Bài 8:Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OA < OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OB = OD. Gọi M là giao điểm của AD và BC. Chứng minh rằng: a) AD = BC. b)tam giác MAB = tam giác MCD
a: Xét ΔOAD và ΔOCB có
OA=OC
\(\widehat{COB}\) chung
OD=OB
Do đó: ΔOAD=ΔOCB
Suy ra: AD=BC
b: Ta có: ΔOAD=ΔOCB
nên \(\widehat{OAD}=\widehat{OCB}\)
mà \(\widehat{MAB}=180^0-\widehat{OAD}\)
và \(\widehat{MCD}=180^0-\widehat{OCB}\)
nên \(\widehat{MAB}=\widehat{MCD}\)
Xét ΔMAB và ΔMCD có
\(\widehat{MAB}=\widehat{MCD}\)
AB=CD
\(\widehat{MBA}=\widehat{MDC}\)
Do đó: ΔMAB=ΔMCD
Cho góc xOy khác góc bẹt. Trên tia Ox lấy các điểm A, B thuộc tia Ox sao cho OA<OB. Lấy các điểm C,D thuộc tia Oy sao cho OC=OA,OB=OD.Gọi M là giao điểm của AD và BC .chứng minh rằng:
a) AD=BC
b) tam giác MAB = tam giác MCD
c) OM là tia phân giác của góc xOy
Các bạn giúp mình nhé thank you
Cho góc xOy khác góc bẹt. Lấy các điểm A, B thuộc tia Ox sao cho OA < OB. Lấy các điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng
a) AD = BC
b) ΔEAB = ΔECD
c) OE là tia phân giác của góc xOy
a)
ΔOAD và ΔOCB có:
OA = OC (gt)
Góc O chung
OD = OB (gt)
⇒ ΔOAD = ΔOCB (c.g.c)
⇒ AD = BC (hai cạnh tương ứng).
c) Ta có:
ΔEAB=ΔECD
nên EB=ED
Xét ΔOEB và ΔOED có
OE chung
EB=ED
OB=OD
Do đó: ΔOEB=ΔOED
Suy ra: BOE=DOE
hay OE là tia phân giác của góc xOy
Cho góc xOy khác góc bẹt. Lấy điểm A và B thuộc tia Ox , C và D thuộc Oy sao cho OA = OC ; OB = OD.
a) Chứng minh AD = BC.
b) Gọi I là giao điểm của AD và BC . Chứng minh tam giác IAB = tam giác ICD.
c) Chứng minh OI là phân giác của góc xOy .
d) Chứng minh AC // BD.
a: Xét ΔOAD và ΔOBC có
OA=OB
\(\widehat{O}\) chung
OD=OC
Do đó:ΔOAD=ΔOBC
Suy ra: AD=BC
Cho góc xOy khác 180 độ lấy các điểm A,B thuộc tia Ox sao cho OA<OB. Lấy các điểm C,D thuộc tia Oy sao cho OC=OA, OD=OB. Gọi M là giao điểm của AD và BC. CMR: AD=BC, tam giác MAB= tam giác MCD. Vẽ cả nữa nha
Tam giác AOC có: AO = CO nên tam giác AOC cân tại O
⇒OAC=180−O2⇒OAC=180−O2
Tam giác BOD có OB = OD nên tam giác BOD cân tại O
⇒OBD=180−O2⇒OBD=180−O2
⇒OAC=OBD⇒OAC=OBDMà hai góc này ở vị trí đồng vị nên AC song song với BD.
Cho góc xOy khác góc bẹt . Lấy các điểm A , B ϵ tia Ox sao cho OA < OB . Gọi E là giao điểm của AD và BC . Chứng minh rằng :
a, AD =BC
b, Δ EAB = ΔACD
c, OE là phân giác của góc xOy
cho góc xoy khác gót bẹt.lấy các điểm a,b thuộc tia ox sao cho oa<ob. gọi e là giao điểm của ad và bc. chứng minh rằng
a) ad=bc
b)tam giác EAB=tam giác ACD
c)OE là phân giác của xoy
a: Xét ΔOCB và ΔOAD có
OC=OA
\(\widehat{O}\) chung
OB=OD
Do đó: ΔOCB=ΔOAD
Cho góc xOy khác góc bẹt. Laays các điểm A,B thuộc tia Ox sao cho OA <OB. Lấy điểm C,D thuộc tia Oy sao cho OC=OA,OD=Ob. Gọi E là giao ddieeemr của Ad và BC. Chứng minh rằng:
a)AD=BC;
b) tam giác EAB=tam giác ECD;
c)OE là tia phân giác của góc xOy
cho góc xOy khác góc bẹt. lấy các điểm A,B thuộc tia Ox sao cho OA<OB. lấy các điểm C,D thuộc tia Oy sao cho OC=OA, OD=OB. gọi E là giao điểm của AD và BC. chứng minh
a) tam giác OAD= tam giác OCB
b)tam giác EAB=tam giác ECD
c)OE là tia phân giác của góc xOy