Chứng minh rằng: 200p\(^2\)+1, 200p\(^2\)-1 ko thể dồng thời là SNT
Chứng minh rằng: với n>2 nên n thuộc N thì 2n - 1 và 2n +1 ko thể đồng thời là 2 SNT
*với n chẵn
2^n=4^t
nếu t chẵn 4^t tận cùng luôn =6 vậy 2^n-1 luôn chia hết cho 5
nếu t lẻ 4^t tận cùng luôn =4 vậy 2^n+1 luôn chia hết cho 5
*với n lẻ
2^n=2^(2t+1 )=2.4^t chia 3 luôn dư 2 => 2^n+1 chia hết cho 3
Chứng minh rằng: với n>2 nên n thuộc N thì 2n - 1 và 2n +1 ko thể đồng thời là 2 SNT
Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3
Do (2;3)=1 nên (2n;3)=1
=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3
=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)
Cho n>2 và n ko chia hết cho 3. CMR: hai số n2 - 1 và n2 + 1 ko thể đồng thời là SNT.
Chú thích: CMR: chứng minh rằng
ko: không
SNT: số nguyên tố.
giải chi tiết ra hộ mìk với! Ai giải đc mìk like cho!
Giúp mik với!
Chứng minh rằng tổng bình phương của 3 SNT lớn hơn 3 ko thể là 1 số NT
Heloo
3 số ko chia hết cho 3
bình lên chia 3 dư 1
=> 3k + 1 + 3k + 1 + 3k + 1
= 6k + 3 chia hết cho 3
Chứng minh rằng tổng bình phương của 3 SNT lớn hơn 3 ko thể là 1 số NT
Cho \(n< 2\)và không chia hết cho 3.Chứng minh rằng: 2 số \(n^2-1\)và\(n^2+1\)không thể đồng thời là SNT.
Cho n>2 và không chia hết cho 3. Chứng minh rằng 2 số n.n và n.n+1 ko thể đồng thời là 2 số nguyên tố.
n.n có trên 2 ước là 1, n và n.n và các ước khác
cho 2>a,b,c>0. Chứng minh a(2-b),b(2-c),c(2-a) không thể dồng thời lớn hơn 1. giúp mình đi mà
Vì 2>a,b,c>0 => a(2-b); b(2-c); c(2-a) là các số thực dương.
Áp dụng bất đẳng thức Cauchy cho 6 số, ta có:
\(\dfrac{a+\left(2-b\right)+b+\left(2-c\right)+c+\left(2-a\right)}{6}\ge\)
\(\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)
\(\Rightarrow\dfrac{a+b+c-a-b-c+2+2+2}{6}\ge\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)
\(\Rightarrow1\ge\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)
\(\Rightarrow1^6\ge a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)\Rightarrow1\ge a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)\)
=> a(2-b); b(2-c); c(2-a) không đồng thời lớn hơn 1
=> đpcm
Xét hiệu:
1-a(2-b)b(2-c)c(2-a)>1-abc(2-2)(2-2)(2-2)=1>0 (luôn đúng)
Bài 1:Tìm SNT P sao cho
a,P^2+44 là SNT
b,P+10,-+14 là SNT
Bài 2,CMR:n^2-1 và n^2+1 không thể đồng thời là SNT
(n>2,n không chia hết cho 3)
Bài 3: Cho P là SNT>5 và 2P+1 cũng là SNT
CTR:P(P+5)+31 là Hợp Số
Bài 4: CMR:Nếu P là SNT>3 thì (P-1)(P+1) chia hết cho 24
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
cho p > 3 là snt chứng minh rằng p mũ 2 trừ 1 chia hết cho 24
Ta có: p>3=>p là số lẻ
Ta có: TH: p=2k+1
p2-1=4k2+4k
=4(k2+k)
=>p2-1 chia hết cho 8
TH: p=3k+1
=>p2-1=9k2+6k
=> chia hết cho 3
TH: p=3k+2
=>p2-1=9k2+12k+3
chia hết cho 3
=> p2-1 CHIA HẾT CHO 3;8
=> p2-1 CHIA HẾT CHO 24 với điều kiện p>3