Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dũng nguyễn
Xem chi tiết
ngonhuminh
22 tháng 10 2016 lúc 20:36

*với n chẵn

2^n=4^t

nếu t chẵn  4^t tận cùng luôn =6 vậy 2^n-1 luôn chia hết cho 5

nếu t lẻ 4^t tận cùng luôn =4 vậy 2^n+1 luôn chia hết cho 5

*với n lẻ

2^n=2^(2t+1 )=2.4^t chia 3 luôn dư 2 => 2^n+1 chia hết cho 3

Nguyễn Văn Dũng
Xem chi tiết
soyeon_Tiểubàng giải
22 tháng 10 2016 lúc 20:05

Xét 3 số tự nhiên liên tiếp: 2n - 1; 2n; 2n + 1, trong 3 số này có 1 số chia hết cho 3

Do (2;3)=1 nên (2n;3)=1

=> trong 2 số 2n - 1; 2n + 1 có 1 số chia hết cho 3

=> 2n - 1 và 2n + 1 không thể đồng thời là 2 số nguyên tố (đpcm)

Nguyễn Phương Thảo
Xem chi tiết
Hiếu Nguyễn Trọng
Xem chi tiết
Nguyễn Tiến Sơn
14 tháng 11 2018 lúc 21:38

Heloo 

3 số ko chia hết cho 3 

bình lên chia 3 dư 1

=> 3k + 1 + 3k + 1 + 3k + 1

= 6k + 3 chia hết cho 3

miu cooki
Xem chi tiết
Lương Liêm
Xem chi tiết
Trịnh Thu Phương
Xem chi tiết
O_O
30 tháng 12 2015 lúc 10:43

n.n có trên 2 ước là 1, n và n.n và các ước khác

 

Võ Nhật  Hoàng
Xem chi tiết
Nguyễn Thị Huyền Trang
29 tháng 7 2017 lúc 9:07

Vì 2>a,b,c>0 => a(2-b); b(2-c); c(2-a) là các số thực dương.

Áp dụng bất đẳng thức Cauchy cho 6 số, ta có:

\(\dfrac{a+\left(2-b\right)+b+\left(2-c\right)+c+\left(2-a\right)}{6}\ge\)

\(\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)

\(\Rightarrow\dfrac{a+b+c-a-b-c+2+2+2}{6}\ge\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)

\(\Rightarrow1\ge\sqrt[6]{a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)}\)

\(\Rightarrow1^6\ge a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)\Rightarrow1\ge a.\left(2-b\right).b.\left(2-c\right).c.\left(2-a\right)\)

=> a(2-b); b(2-c); c(2-a) không đồng thời lớn hơn 1

=> đpcm

Võ Nhật  Hoàng
1 tháng 8 2017 lúc 9:27

Xét hiệu:

1-a(2-b)b(2-c)c(2-a)>1-abc(2-2)(2-2)(2-2)=1>0 (luôn đúng)

Lê Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 14:15

Bài 4:

Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ

hay P-1 và P+1 là các số chẵn

\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)

Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)

Thay P=3k+1 vào (P-1)(P+1), ta được:

\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)

Thay P=3k+2 vào (P-1)(P+1), ta được:

\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)

Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)

mà \(\left(P-1\right)\left(P+1\right)⋮8\)

và (3;8)=1

nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)

Trần Minh Quang
Xem chi tiết
shitbo
26 tháng 10 2018 lúc 20:39

Ta có: p>3=>p là số lẻ

Ta có: TH: p=2k+1

p2-1=4k2+4k

=4(k2+k)

=>p2-1 chia hết cho 8

TH: p=3k+1

=>p2-1=9k2+6k

=> chia hết cho 3

TH: p=3k+2

=>p2-1=9k2+12k+3

chia hết cho 3

=> p2-1 CHIA HẾT CHO 3;8

=> p2-1 CHIA HẾT CHO 24 với điều kiện p>3